
Assessing the Vulnerabilities of RISC-V using the

gem5 Simulator

Mahreen Khan1∗

, Maria Mushtaq1, Renaud Pacalet1 and Ludovic Apvrille1

1Télécom Paris, France

Abstract

Emerging RISC-V processors require rigorous security evaluation to address microarchitectural vulnerabilities

inherent in their rapidly evolving ecosystem. A recent paper [1] implemented both known and novel side-channel

attacks targeting commercial RISC-V CPUs (U74 and C906). While this hardware-based research confirmed

vulnerabilities, it could not provide detailed insights into attack dynamics. We bridge this gap using the gem5

simulation framework to systematically analyze side-channel attacks on RISC-V architectures. Our paper focuses

on the access-retired attack, which exploits the unprivileged rdinstret instruction to infer protected filesystem

data. By tracking retired instruction counts, attackers detect microarchitectural state differences caused by

directory access checks. We utilize the gem5 simulator in full-system (FS) mode to capture kernel-level behaviors,

allowing us to analyze critical performance metrics including instruction retirement, cache performance, and

branch prediction statistics. This detailed simulation-based analysis is essential for understanding the behavior

of the attack and for developing effective countermeasures. Advancing RISC-V security research with simulation

tools like gem5 is thus a promising direction for mitigating future side-channel vulnerabilities.

Introduction

The open-source RISC-V instruction set architecture

(ISA) has emerged as a transformative force in com-

puting, offering unprecedented flexibility for custom

hardware design. However, its rapid adoption in safety-

critical domains, from embedded systems to data cen-

ters, demands rigorous scrutiny of microarchitectural

security. While RISC-V’s modularity enables perfor-

mance and power optimizations, it also introduces at-

tack surfaces absent in traditional ISAs. Recent work

by Gerlach et al. [1] demonstrated this risk empirically,

implementing novel side-channel attacks on commer-

cial RISC-V cores (U74, C906) that exploit microar-

chitectural resource contention. Their hardware-based

validation confirmed vulnerabilities but left critical

gaps in understanding attack mechanics, particularly

how ISA-specific features interact with microarchitec-

tural states.

To address this limitation, we propose simulation-

driven analysis using the gem5 framework [2], which

provides cycle-accurate modeling of RISC-V processors

in full-system (FS) mode. We focus on the rdinstret-

based access-retired attack, where adversaries infer

filesystem metadata through retired instruction count

variations. Unlike hardware experiments, gem5 en-

ables granular tracing of kernel-level events, cache

states, and pipeline behaviors during attack execu-

tion. This methodology reveals how directory access

checks, ostensibly protected by privilege boundaries,

create measurable timing differences through cache

line contention and branch mispredictions.

∗Corresponding author: mahreen.khan@telecom-paris.fr

gem5 Methodology

To analyze the access-retired attack on RISC-V, we

configure gem5 with the following setup:

1. Simulation Mode: We use Full-System (FS)

mode, which models the complete hardware-

software stack, including the operating system.

This is essential for capturing kernel-level interac-

tions during filesystem access checks.

2. Disk Image and Kernel: We configure gem5

for RISC-V, our target architecture, and mod-

ify the RISC-V disk image to include the at-

tack binary. The system boots using the

riscv-bootloader-vmlinux-5.10 kernel.

3. CPU Model: Use the O3CPU out-of-order proces-

sor model to simulate speculative execution and

branch prediction behaviors. This enables track-

ing of pipeline stalls and branch mispredictions.

4. Memory System: Configure cache hierarchies

(L1/L2) and memory system [2].

Figure 1 summarizes the workflow for simulating gem5

in full-system mode.

���������	����

	�������
�

"�� ������

!
����	���
,���)�%���

���������0

	����

?��� <

;�����

�� J���M�

F�
��
SR�QO

Figure 1: Gem5 full-system simulation workflow for ana-

lyzing the access-retired attack on RISC-V.

1

mailto: mahreen.khan@telecom-paris.fr

Results

The gem5 simulator successfully implemented and an-

alyzed the access-retired attack on the RISC-V ar-

chitecture. The results align closely with hardware

measurements, demonstrating gem5’s ability to model

detailed microarchitectural behavior and provide in-

sights into attack mechanisms.

Our experiments show a clear side-channel signal

through systematic differences in microarchitectural

metrics when accessing existing versus non-existing

files. As shown in Figure 2, the retired instruction

count increases by 25% (from 3,300 to 4,120) when a

target file exists, even though the system calls return

NULL in both cases. This increase is due to extra

kernel checks, such as permission validation.

File Does Not Exist File Exists

3400

3600

3800

4000

Co
un

t

File Does Not Exist: 3300
File Exists: 4120

Retired Instructions

Figure 2: Retired instruction counts comparison.

The simulated execution time nearly doubles (from

65.61s to 151.30s) when the file exists, as illustrated

in Figure 3. This extended duration correlates with

the higher retired instruction count.

File Does Not Exist File Exists
0

20

40

60

80

100

120

140

Co
un

t

File Does Not Exist: 65.61
File Exists: 151.3

Simulated Seconds

Figure 3: Simulated execution time comparison.

Additionally, the total number of simulated instruc-

tions rises by 20% (from 267M to 320M) for file exis-

tence as shown in Figure 4. Memory subsystem behav-

ior also differentiates file existence, as evidenced by

increases in branch fetching, indirect branch lookups,

and reorder buffer entries. Table 1 summarizes the

metrics comparing file existence and non-existence sce-

narios. These consistent differences confirm that failed

system calls leak file existence information through

multiple microarchitectural vectors.

File Does Not Exist File Exists

2.7

2.8

2.9

3.0

3.1

3.2

Co
un

t

1e8

File Does Not Exist: 267762346
File Exists: 320194840

Simulated Instructions

Figure 4: Total instruction counts comparison.

Table 1: Comparison of Metrics for File Existence

Metric File Exists File Does Not Exist

Retired Instructions 4,120 3,300

Indirect Branch Lookups 3,915,281 2,825,809

Load Instructions Executed 71,511,594 55,635,190

Branches Fetched 90,168,771 76,010,909

Reorder Buffer Total 678,320,302 575,317,912

Simulated Seconds 151.30 65.61

Simulated Instructions 320,194,840 267,762,346

Future Work

Future work could focus on developing a security re-

search platform for RISC-V based on gem5, providing

a modular framework for analyzing vulnerabilities.

This platform could include customizable templates

for cache and pipeline designs, and automated tools for

profiling and visualizing key metrics like speculative ex-

ecution and cache behaviors. Integrating standardized

APIs would further enhance its versatility, enabling

researchers to explore attack vectors and mitigation

strategies more effectively.

Conclusion

This paper demonstrates the feasibility of using gem5

for RISC-V security research by implementing and

validating access-retired attack. Simulation-based ap-

proaches provide a powerful tool for advancing RISC-V

security, enabling researchers to identify and mitigate

vulnerabilities in a cost-effective and scalable manner.

References

[1] Lukas Gerlach et al. “A security RISC: microarchitectural
attacks on hardware RISC-V CPUs”. In: 2023 IEEE Sympo-
sium on Security and Privacy (SP). IEEE. 2023, pp. 2321–
2338.

[2] Jason Lowe-Power. Gem5 Documentation. [Online]. Avail-
able: https://www.gem5.org/documentation/. Sat 29
June 2024.

2

https://www.gem5.org/documentation/

STDP-Trained Spiking Neural Network Reliability

Assessment Through Fault Injections

Zalfa Jouni and Haralampos-G. Stratigopoulos
Sorbonne Université, CNRS, LIP6, Paris, France

I. INTRODUCTION

Spiking Neural Networks (SNNs) represent a promising

computing paradigm for hardware-based AI that closely mim-

ics the human brain mechanism [1]. In contrast to conventional

Artificial Neural Networks (ANNs), SNNs deliver low power

consumption and rapid inference, making them especially

suited for edge computing [1]. Main training approaches

include gradient-based backpropagation adaptations and ANN-

to-SNN conversion. In addition, spike-timing dependent plas-

ticity (STDP) stands as a well-known, biologically plausible

rule. Prior studies show that STDP proves effective for on-

chip unsupervised learning. For example, Intel’s Loihi neuro-

morphic processor has on-chip learning rules that allow local,

unsupervised learning using STDP-based synaptic updates [2].

The design of efficient SNN hardware accelerators remains

an intense research field. Many assume that SNNs inherit the

fault tolerance of the human brain. However, recent fault injec-

tion studies enabled by automated fault injection frameworks

challenge this assumption [3].

The vast majority of previous fault injection studies in SNNs

considered traditional convolutional and fully-connected SNNs

trained with gradient-based backpropagation [4]. In this work,

we study the reliability of STDP-trained SNNs under hardware

faults which is largely unexplored.

II. FAULT INJECTION SETUP

A. SNN case study and training framework

The fault injection experiment is conducted on the STDP-

trained SNN architecture shown in Fig. 1 [5] using the MNIST

dataset. Pixel intensities are converted into Poisson-distributed

spike trains and fed into the network’s first layer. The first

layer has 784 input neurons (one per pixel), and these neurons

are fully-connected, via excitatory synapses, to a second layer

of 400 excitatory neurons. Each excitatory neuron in the

second layer is paired one-to-one with an inhibitory neuron via

excitatory synapses. The neuron follows the leaky integrate-

and-fire (LIF) model, chosen for its biomimetic and simple

behavior. For the purpose of the experiment, we utilize the

open-source, Python-based Brian 2 simulator for SNNs [6],

leveraging GPU acceleration.

This work was funded by the ANR RE-TRUSTING project under Grant
No ANR-21-CE24-0015-03 and by the European Network of Excellence
dAIEDGE under Grant Agreement No 101120726.

Input Neurons

(n = 28x28)

.

.

.

.

.

.

Excitatory

Neurons

(n = 400)

Inhibitory

Neurons

(n = 400)

All0to0All
One0to0One Soft Winner-Take-All Output

G1

G2

G3

G4

G5

G6

G7

G8

G9

Labeled

Excitatory

Neuron

Groups

819

829

839

849

859

869

879

889

899

One0to0All
(except same index)

Fig. 1: SNN architecture for STDP learning [5].

B. Fault model

We consider three fault models : (1) Dead neurons, which

halt their spiking activity regardless the input; (2) Saturated

neurons, which continuously fire regardless the input; and (3)

Synapse weight perturbations, modeled as bit flips considering

that the weights are stored as digital words in on-chip memory.

C. Fault injection scenarios

We consider the following fault injection scenarios grouped

under three categories.

1) Faults occurring after training: STDP learning is con-

ducted on a fault-free network, but permanent faults may arise

over the hardware’s lifetime, potentially impacting inference.

This scenario is analogous to training the SNN in software

and then deploying it onto faulty hardware. We consider three

scenarios:

a) Scenario 1a: Single and multiple dead neurons.

b) Scenario 1b: Single saturated neurons. We do not

consider multiple saturated faults since, as we will see, even

a single saturated neuron fault drastically affects the classifi-

cation accuracy.

c) Scenario 1c: Synapse weight perturbation faults con-

sidering different bit error rate (BER) probabilities.

The objective is to categorize different fault types and loca-

tions as either benign or critical, and study the classification

drop as a function of fault density for neurons and BER for

synapses.

2) Faults occurring prior to training: STDP learning is

conducted on-chip on a faulty network, which may impact

training quality. These faults persist during inference. We

consider two scenarios:

a) Scenario 2a: Single and multiple dead neurons.

b) Scenario 2b: Single saturated neuron.

The goal here is to assess whether biologically inspired

STDP learning can adapt to faulty hardware, demonstrating

0.08 5 10 20 30 40
Dead Neurons (%)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

Baseline
After Training
Prior to Training

0.08 5 10 20 30 40
Dead Neurons (%)

0

50

100

150

200

250

300

N
um

be
r

of
 N

eu
ro

ns

Excitatory Layer
Inhibitory Layer
Input Layer

Fig. 2: Accuracy as a function of percentage of randomly distributed
dead neurons introduced before and after the training process.

0
26

1
52

2
78

3 0
13

3
26

6
39

9 0
13

3
26

6
39

9

Neuron Index

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Input Layer Excitatory Layer Inhibitory Layer

Baseline
Input Layer
Excitatory Layer
Inhibitory Layer
After Training
Before Training

Fig. 3: Impact of a single saturated neuron occurring before and after
the training process. The x-axis shows the neuron index in the input
(green), excitatory (blue) and inhibitory (orange) layers.

inherent robustness. Note that synapse faults in this category

are irrelevant since they are overwritten during training.

3) Transient faults occurring during training: Here, we

assume that learning takes place on-chip and radiation, volt-

age and temperature fluctuations, etc., affect synapse weights

during the process.

a) Scenario 3a: The memory storing the synapses un-

dergoes a BER at a random instant of learning process.

The aim is to determine whether learning can still succeed

despite transient faults. Bit-flips are regarded as transient since

weights may be updated throughout the training process.

III. FAULT INJECTION RESULTS

1) Faults occurring after training:

a) Scenario 1a: The results illustrated in Fig. 2 show

that classification accuracy remains largely stable around the

baseline of 90.7%, even with dead neuron fault densities as

high as 10%. Additionally, neither the proportion of dead

neurons within a specific layer nor their exact locations within

the layer seem to play a role.

b) Scenario 1b: As shown in Fig. 3, the accuracy drop

varies with the neuron location within the layer, but as a

general observation it is significant for all neurons and appears

to be more pronounced for the inhibitory layer. This is because

a saturated neuron in the inhibitory layer suppresses the

activity of all neurons in the excitatory layer except the one

that connects to it, thus the same class is permanently selected.

c) Scenario 1c: For each BER probability, 100 ex-

periments were conducted, and the average, minimum, and

maximum accuracy are reported in Fig. 4. When the BER is

below 10
−2, a relatively high and likely unrealistic value, the

accuracy remains close to the baseline.

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

BER

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

During Training
Baseline (90.7%)
After Training

Fig. 4: Accuracy as a function of BER probability in synaptic weights,
introduced during and after training.

2) Faults occurring prior to training:

a) Scenario 2a: The results illustrated in Fig. 2 show that

the network maintains a relatively high accuracy, experiencing

only a minor accuracy drop of less than 5%, when up to 10%

of the neurons are dead.

b) Scenario 2b: As shown in Fig. 3, saturation in the

input layer has no effect on classification accuracy. In the

excitatory layer, accuracy can decline by up to 10%, whereas

in the inhibitory layer, it is completely compromised reducing

from the baseline value by 83%.

3) Transient faults occurring during training:

a) Scenario 3a: Fig. 4 shows that even for an extremely

high BER of 10
−1 occurred during training, the learning

process successfully completes, achieving an accuracy very

close to the baseline. This experiment demonstrates that the

network training can adapt to a high rate of multiple bit-flips

during the training process.

IV. CONCLUSION

Our experiments demonstrated that dead neurons up to 5%

or synaptic weights affected by a BER as high as 10−2 do not

impact classification accuracy, and learning can compensate

for them. In contrast, learning fails when saturated neurons are

present in the excitatory and inhibitory layers, and accuracy is

significantly affected if neurons become saturated during the

chip’s lifetime, with the last inhibitory layer being the most

critical. These findings suggest that testing and fault tolerance

strategies could focus exclusively on saturated neuron faults,

thereby significantly reducing costs.

REFERENCES

[1] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and
B. Kay, “Opportunities for neuromorphic computing algorithms and
applications,” Nat. Comput. Sci., vol. 2, no. 1, pp. 10–19, Jan. 2022.

[2] G. Orchard et al., “Efficient neuromorphic signal processing with Loihi
2,” in IEEE Workshop Signal Process. Syst. (SiPS), Nov. 2021, pp. 254–
259.

[3] T. Spyrou, S. Hamdioui, and H.-G. Stratigopoulos, “SpikeFI: A fault
injection framework for spiking neural networks,” arXiv:2412.06795,
2024.

[4] H. Stratigopoulos, T. Spyrou, and S. Raptis, “Testing and reliability of
spiking neural networks: A review of the state-of-the-art,” in Proc. IEEE

Int. Symp. Defect Fault Toler. VLSI Nanotechnol. Syst. (DFT), Oct. 2023.
[5] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition

using spike-timing-dependent plasticity,” Front. Comput. Neurosci., vol.
9, Aug. 2015.

[6] M. Stimberg, R. Brette, and D. FM Goodman, “Brian 2, an intuitive and
efficient neural simulator,” eLife, vol. 8, Oct. 2019.

Evaluation of the Interactions Between

Cybersecurity and Reliability Mitigations in the

Internet of Things

Théo Serru, Guillaume Andrieux, Olivier Pasquier, Sébastien Pillement

Nantes Université, CNRS,

IETR-UMR 6164

F-44000, Nantes, France

{theo.serru, guillaume.andrieux, olivier.pasquier, sebastien.pillement}@univ-nantes.fr

Abstract—Environmental conditions, low power, high connec-
tivity and heterogeneous nature of internet of things (IoT) make
it very vulnerable to cyberattacks and failures. In addition,
security and reliability can influence each other, especially,
countermeasures can increase one notion at the cost of the other.
With the development of IoT in critical fields such as energy,
transportation or healthcare, safety has become a bigger concern.
It is therefore paramount to evaluate, not only security and
reliability separately, but also to measure their interactions.

In this work, we propose to investigate the challenge of
assessing security measures’ reliability, and reliability measures’
security. Our goal is to develop a methodology that gives quan-
titative indicators on the modifications of security and reliability
induced by a countermeasure. With this evaluation, architects
will be able to compare several implementations with security
and reliability in mind.

Index Terms—Cybersecurity, Reliability, IoT, 5G.

I. INTRODUCTION

Internet of Things (IoT) is built upon connected objects

and high connectivity networks such as 5G. These devices are

integrated in the environment for monitoring, data processing

and decision making. IoT specificities like harsh environmental

conditions, their low-power nature, or the possibility to harvest

energy may negatively impact the reliability. Cybersecurity is

also a big concern in IoT due to its highly connected nature.

For this reason, many works have been studying cyberattacks,

failures and their impacts at every layer of the IoT architecture.

In addition, failures and cyberattacks interact with each

other. For instance, a failure in the power supply might help the

attacker to penetrate a system. Conversely, the famous Stuxnet

attack showed that a coordinated attack can lead to physical

failures with catastrophic consequences.

These interactions imply that reliability, safety and cyberse-

curity can no longer be considered as separate fields, especially

when dealing with cyber-physical systems.

In the literature, researchers working on reliability, safety

or security modeling proposed works combining these notions

[1], [2], [3]. Their goal is to model the behavior of a system

in the case of security or reliability events and to modify the

This work is funded by the French National Research Agency under the
France 2030 label (NF-HiSec ANR-22-PEFT-0009).

1
2
3
4

Perception Layer
Physical layer which contains sensors,
actuators, RFID tags, etc.

Network Layer
Transfers data from perception to middleware layer
(may use 5G, WiFi, Ethernet, ZigBee, Bluetooth, etc.).

Middleware Layer
Stores, processes the received data and routes it
to the appropriate device.

Application layer
Provides services for applications or users in
building, transportation, power grids, healthcare, etc.

Fig. 1. The Four Layer IoT Architecture.

architecture with countermeasures. With a formal modeling,

one can build safe-and-secure-by-design architectures. How-

ever, these works lack of validation [1], especially on the real

impacts that the integration of countermeasures will have on

the system (and at different levels of abstraction).

In this work, we propose to investigate how security and

reliability countermeasures might impact reliability and secu-

rity respectively. We want to highlight the existing interactions

(reinforcement, conditional dependency, conflict or indepen-

dence) and quantify them with appropriate metrics. To this

end, we will focus on countermeasures at the perception layer

and develop a method for the evaluation of reliability and

security of countermeasures.

II. IOT

A. Architecture

IoT is composed of sensors, actuators, gateways, cloud

services, networks and application servers. Traditionally, the

architecture of IoT is divided in several layers, with no real

agreement on the number of layers due to the nonuniformity

and lack of standardization [4].

Here, we give a quick overview of the four-layer architec-

ture.

Perception layer: corresponds to the physical layer where

sensors collect data about the environment. Sensor nodes

are composed of sensors, a transceiver, a processor and a

power unit. They mostly communicate wirelessly (in a wireless

sensor network or WSN) to pass the information to the upper

layers.

Network layer: carries and transfers data from perception

layer to servers. The unprocessed data can be filtered and

preprocessed for analysis.

Middleware layer: have large storage and processing

capabilities. It processes the received data and routes it to the

appropriate device.

Application layer: is the interface that provides services

for the application or user.

The sensor layer is cyber-physical by nature, embedding

sensors, actuators and communication capabilities in a poten-

tially harsh environment. Because of the environment and the

resource constraints, this layer is more prone to failures which

have a negative impact on the overall safety of IoT [3]. In

addition, many countermeasures in this layer are physically

implemented, which gives the opportunity to evaluate the

reliability and security of hardware and software. Therefore,

we will start our work by studying this layer.

B. Reliability and Security Events in IoT

Numerous reliability and security events can occur in sensor

nodes and WSN. Table I displays attacks (from [4], [5]) and

reliability faults (from [6]) that may lead to failures of the

perception layer, and some of their countermeasures.

TABLE I
CYBERATTACKS, FAULTS AND COUNTERMEASURES FOR THE

PERCEPTION LAYER

Security Reliability

A
tt

ac
k

s/
F

au
lt

s

Malicious node attack Low energy
False injection attack Miscalibration

Hardware attacks Bit-flip
Unauthorized admittance Limited memory fault

Side channel attack (SCA) Memory errors
Eavesdropping/Sniffing High battery temperature

Node Cloning Battery low voltage
Battery drainage attack Interference

Integrity attacks Broken connector
Replay attack Material decay

Environmental effects
Data processing faults
Software design faults
Incorrect algorithms

C
o

u
n

te
rm

ea
su

re
s

Detection Redundant design
Physical layer security Hardware redundancy

Targeted defense Software redundancy
Physical layer security Information redundancy

Access control Data redundancy
Algorithm-based Time redundancy

Channel management Fault tolerance
Encryption

Authentication
Cryptography

In Table I, one might identify interactions between relia-

bility and security countermeasures. For instance, adding a

detection module will lower the reliability by adding new

components that can fail. It will however increase the security

and reliability by detecting faults and allowing an intervention

before any accident happens.

III. PERSPECTIVES

The first step of our work is a thorough analysis of attacks,

failures and their countermeasures. With this analysis, we

want to highlight the links between faults, countermeasures or

evaluation means (e.g. metrics) used in reliability and security.

The second step is to develop an approach to evaluate the

reliability of a cybersecurity measure, and conversely. This

methodology will consider the specificities of IoT and the

previous step to tailor our analysis to the countermeasure

evaluated. If the approach intends to be usable for every

countermeasure, it will pay special attention to the parameters

highlighted at step one. As we are dealing with the perception

layer, we will consider both hardware and software counter-

measures and impacts.

Finally, with enough confidence in the analysis at the node

level, we will evaluate the impact of these countermeasures

at the (local) network level. At this level, we might identify

new interactions, or known consequences might have different

impacts if several nodes embed the countermeasure.

IV. CONCLUSION

Cybersecurity and reliability are major concerns for the

internet of things. In addition to traditional threats and fail-

ures, implementing countermeasures might increase security

at the cost of reliability (or conversely). There is thus an

urgent need for holistic methods that evaluate the impact of

countermeasures on both reliability and security. This work

will benefit the evaluation of countermeasures by considering

performance and potential side-effects. Numerical indications

on the modifications of reliability and/or security induced by

a countermeasure may then be implemented in model-based

analyses for a system or network level analysis.

REFERENCES

[1] G. Kavallieratos, S. Katsikas, and V. Gkioulos, “Cybersecurity and Safety
Co-Engineering of Cyberphysical Systems—A Comprehensive Survey,”
MPDI Future Internet, vol. 12, no. 4, 2020.

[2] T. Serru, N. Nguyen, M. Batteux, and A. Rauzy, “Minimal critical
sequences in model-based safety and security analyses: Commonalities
and differences,” ACM Trans. Cyber-Phys. Syst., vol. 7, no. 3, Jul. 2023.
[Online]. Available: https://doi.org/10.1145/3593811

[3] A. Abdulhamid, S. Kabir, I. Ghafir, and C. Lei, “An Overview of
Safety and Security Analysis Frameworks for the Internet of Things,”
Electronics, vol. 12, no. 14, p. 3086, Jul. 2023.

[4] W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash, “An
In-Depth Analysis of IoT Security Requirements, Challenges, and Their
Countermeasures via Software-Defined Security,” IEEE Internet of Things

Journal, vol. 7, no. 10, pp. 10 250–10 276, Oct. 2020.
[5] W. Fei, H. Ohno, and S. Sampalli, “A Systematic Review of IoT Security:

Research Potential, Challenges, and Future Directions,” ACM Comput.

Surv., vol. 56, no. 5, pp. 111:1–111:40, Nov. 2023.
[6] M. Melo and G. Aquino, “The Pathology of Failures in IoT Systems,” in

Computational Science and Its Applications – ICCSA 2021, O. Gervasi,
B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan,
A. M. A. C. Rocha, E. Tarantino, and C. M. Torre, Eds. Cham: Springer
International Publishing, 2021, pp. 437–452.

Atténuation à faible coût des chevaux de Troie matériels dans

un NoC utilisant une compression basée sur la technique Delta

Hamza Amara*, Cédric Killian §, Daniel Chillet* and Emmanuel Casseau*

* Univ. Rennes, Inria, CNRS, IRISA, § Univ. Jean-Monnet Saint-Etienne, Lab. hubet Curien, CNRS

Abstract—Les systèmes multiprocesseurs sur puce (MPSoC)
et les réseaux sur puce (NoC) sont des composants clés des
architectures modernes, permettant une communication efficace
entre les unités de traitement, mais peuvent souffrir d’une latence
importante et d’une forte consommation de bande passante. La
compression Delta atténue ce problème en exploitant la redon-
dance des données a transmettre, mais augmente la vulnérabilité
aux erreurs et aux attaques, notamment celles des chevaux
de Troie matériels (HT). Cet article présente DyED2C, une
technique de protection à faible coût qui adapte dynamiquement
les codes de détection et de correction d’erreurs (EDC/ECC)
pour sécuriser les métadonnées des paquets compressés par
une compression basée sur la technique Delta, en utilisant les
bits libres des flits d’en-tête. Les résultats expérimentaux sur
des données de Cifar-10 transitant dans un NoC montrent que
DyED2C réduit l’erreur quadratique moyenne (MSE) de 43%
par rapport au code de Hamming.

Index Terms—Réseau sur puce, Compression basée sur la
technique delta, Sécurité du NoC, Cheval de Troie matériel

I. INTRODUCTION

Le développement des systèmes sur puce multiprocesseurs

(MPSoC) a révolutionné l’informatique, permettant des ar-

chitectures avancées et flexibles. Le réseau sur puce (NoC)

[1], élément clé des MPSoC, assure la communication. Toute-

fois, les composants du NoC proviennent généralement de

propriétés intellectuelles (IP) tierces et peuvent contenir des

cheveaux de Troie matériels (HT). L’augmentation du nombre

de cœurs et des échanges intensifs accroı̂t la latence et la

consommation de bande passante. Pour atténuer ce problème,

des techniques de compression légère nommées Delta, comme

FlitZip [2] et Impv Delta [3], exploitent la redondance des

données pour réduire la taille des paquets. Toutefois, ces

méthodes reposent sur des bases communes pour reconstruire

les données, les rendant vulnérables aux modifications. Les

HT dans les routeurs du NoC peuvent injecter des fautes

dans les paquets compressés, compromettant ainsi l’intégrité

des données. Ce travail propose une méthode d’atténuation

à faible coût, intégrant dynamiquement des codes EDC/ECC

dans les flits d’en-tête pour protéger les bases, offrant ainsi

une protection efficace contre les attaques HT.

II. TRAVAUX RELATIFS

A. Compression de paquets basée sur delta

La compression delta repose sur une base commune B

pour les données {Di} calculant les différences {∆i} entre

elles. La taille du champ alloué pour la base dans le flit

d’en-tête est égale à la taille des données SD. FlitZip [2]

compresse les données utiles du flit en utilisant une taille de

base (SB = SD), tandis que Impv Delta [3] simplifie cette

compression en stockant les bits MSB communs dans la base

et en transmettant les bits LSB non similaires dans le flit de

données utiles compressé. Cela permet de réduire la taille de

la base (SB ≤ SD). Notre travail exploite cette caractéristique

pour inclure des techniques de protection dans les bits libérés.

B. HT au sein des NoC

La protection des NoC contre les HT a été largement étudiée

[4], notamment les attaques de déni de service (DoS) via des

routeurs compromis falsifiant les paquets.

Kulkarni et al. [5] ont introduit un HT modifiant les

adresses de destination des paquets, entraı̂nant des DoS sans

proposer de contre-mesures. Dans [6], les auteurs ont étendu

cette attaque aux champs critiques d’en-tête, dégradant les

performances. Leur solution, basée sur le mélange de bits et

le code Hamming, impose un surcoût matériel sans empêcher

totalement l’activation des HT.

Cependant, ces travaux ignorent l’impact des HT sur les pa-

quets compressés. La compression Delta améliore l’efficacité

du NoC mais fragilise l’intégrité des bases, exposées aux

fautes injectées. Or, la protection des bases par des méthodes

classiques (mélange de bits, EDC/ECC) est limitée par le faible

nombre de bits libres dans le flit d’en-tête. Même Impv Delta,

qui réduit la taille des bases, complique l’intégration d’une

protection efficace, nécessitant une adaptation aux bits librés.

Pour y remédier, nous proposons une technique

d’atténuation à faible coût ajustant dynamiquement l’usage

des bits libérés par la compression pour protéger les bases.

III. DÉTAIL DE L’ATTAQUE

Nous supposons la présence d’un cheval de Troie matériel

(HT) dans un routeur malveillant (RHT), capable de cor-

rompre les données des paquets pendant leur transmission.

L’attaque consiste à inverser la valeur des bits de base dans

les flits d’en-tête et/ou des données utiles des flits.

Dans Fig. 1, nous illustrons une attaque HT dans un NoC

utilisant une compression basée sur la technique delta. Les

données d’images brutes sont mises en paquets et compressées

au niveau de l’interface réseau source NI12, puis acheminées

via le routeur malveillant RHT
14

. Lorsque les paquets passent

par RHT
14

, le HT altère les paquets victimes. À l’arrivée

à l’interface réseau de destination NI10, les paquets sont

décompressés et les données reçues au niveau de IP10 sont

modifiées, ce qui dégrade l’application qui les utilise.

Fig. 1: Scénario d’attaques HT dans un NoC utilisant une

technique de compression.

IV. TECHNIQUE DYED2C PROPOSÉE

A. Principe

DyED2C est une méthode dynamique de détection et correc-

tion d’erreurs conçu pour protéger les bases de paquets com-

pressés contre les attaques basées sur l’injection des fautes.

Contrairement aux méthodes statiques, DyED2C exploite les

bits libérés dans les bases de taille variable pour assurer la

protection sans dépasser le champ alloué SD. Fig. 2 illustre

comment DyED2C utilise les bits libérés dans les bases de

taille variable pour intégrer la protection, sans dépasser le

champ alloué.

B. Implémentation de DyED2C

1) Architecture matérielle: Le module DyED2C étend les

interfaces réseaux (NI) avec deux blocs matériels : DyED2CC

(après compression) et DyED2CD (avant décompression). Ces

deux blocs partagent une architecture commune, DyED2CD

intégrant un bloc supplémentaire de correction des fautes.

L’architecture optimise le coût matériel en utilisant un seul

code de Hamming, ajustable dynamiquement aux bases vari-

ables. Les codes de Hamming sont choisis pour leur efficacité

à corriger les erreurs avec un surcoût en bits minimal. Bien

que des codes plus puissants comme Reed-Solomon ou BCH

existent, ils restent plus coûteux en ressources.

Fig. 2: Exemple d’intégration de la protection à l’aide de bits

libres dans des bases de taille variable.

Fig. 3: Évaluation de la réduction de MSE sur différents taux

d’attaque après utilisation de la protection.

C. Évaluation des performances

Nous évaluons l’efficacité de DyED2C avec Impv Delta [3]

en utilisant la métrique d’erreur quadratique moyenne (MSE)

sur Cifar-101. L’analyse inclut un scénario sans protection

et un code Hamming étendu (limité à 4 bits), en variant le

taux d’attaque RP (10%-50%) et le nombre de fautes nf

(1-5), avec SF = 32 bits et SD = 8 bits. Le HT cible les

bases et les données utiles des flits. Fig. 3 montre que MSE

augmente avec RP , mais DyED2C réduit ce MSE de 46% par

rapport à l’absence de protection et de 43% face au Hamming

étendu. Cette amélioration vient de sa protection dynamique

sur différentes tailles de base, contrairement à la limitation à

4 bits du Hamming étendu.

V. CONCLUSION

Dans cet article, nous avons présenté DyED2C, une tech-

nique de protection dynamique et peu complexe exploitant les

bits disponibles des flits d’en-tête des paquets traversant le

NoC. Comparée au code Hamming, DyED2C atténue efficace-

ment les attaques par injection de fautes, réduisant le MSE

jusqu’à 43% sur Cifar-10 avec la compression Impv Delta.

REFERENCES

[1] M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, J. Balkind, A. Lavrov,
M. Shahrad, S. Payne, and D. Wentzlaff, “Piton: A Manycore Processor
for Multitenant Clouds,” IEEE Micro, Mar. 2017.

[2] D. Deb, R. M.K, and J. Jose, “FlitZip: Effective Packet Compression for
NoC in MultiProcessor System-on-Chip,” IEEE Transactions on Parallel

and Distributed Systems, Jan. 2022.
[3] N. C A, D. M. Viswanathan, and R. K. James, “An Improved Delta Com-

pression Technique for NoC Packets,” in 2023 International Conference

on Next Generation Electronics (NEleX).
[4] S. Charles and P. Mishra, “A Survey of Network-on-Chip Security Attacks

and Countermeasures,” ACM Computing Surveys, Jun. 2022.
[5] V. J. Kulkarni, R. Manju, R. Gupta, J. Jose, and S. Nandi, “Packet

header attack by hardware trojan in NoC based TCMP and its impact
analysis,” in Proceedings of the 15th IEEE/ACM International Symposium

on Networks-on-Chip. Virtual Event: ACM, Oct. 2021.
[6] M. K. J.Y.V., A. K. Swain, S. Kumar, S. R. Sahoo, and K. Mahapatra,

“Run Time Mitigation of Performance Degradation Hardware Trojan
Attacks in Network on Chip,” in 2018 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), Jul. 2018.

1Cifar-10 contient 60 000 images 32x32 avec des pixels de 8 bits.

Distributed Machine Learning Inference Using

Commodity SoC-FPGAs: First Results

Mathieu Hannoun∗†

∗MADICOB
†Laboratoire ETIS,

UMR 8051,

CY Cergy Paris Universités,

ENSEA, CNRS,

F-95000, Cergy, France

ORCID: 0009-0005-0449-2668

Stéphane Zuckerman

Laboratoire ETIS,

UMR 8051,

CY Cergy Paris Universités,

ENSEA, CNRS,

F-95000, Cergy, France

ORCID: 0000-0002-8586-0477

Olivier Romain

Laboratoire ETIS,

UMR 8051,

CY Cergy Paris Universités,

ENSEA, CNRS,

F-95000, Cergy, France

ORCID: 0000-0002-2172-1865

Abstract—Deep Neural Networks (DNNs) have experienced sig-
nificant growth over the years, accompanied by a corresponding
rise in energy consumption due to their escalating demand for
computational resources. To mitigate the environmental impact
of AI and address growing concerns over data privacy, a
growing trend is to process data locally at the edge, rather
than relying on large-scale data centers. FPGA-based systems
are particularly suited for this kind of applications, with their
low power consumption to high parallel computation ratio. The
main drawback of commodity FPGAs is their limited hardware
resources, impacting how big DNNs can be to run efficiently on
such targets. We present a methodology for distributed DNNs on
multiple commodity FPGAs to support models that are usually
only suited for larger FPGAs. We are able to support the
inference for a MobileNetV1 on six Zedboards.

Index Terms—Machine Learning, Deep Learning, CNN,
FPGA, Dynamic Reconfiguration, Edge Computing

I. Introduction

FPGAs struggle with large-scale DNNs or CNNs due to

the high computational demands of floating-point operations.

However, frameworks such as FINN [1] incorporate weight

compression and quantization techniques (e.g., as few as one

or two bits for weights and biases [2]), alongside operation

conversions [3], [4]. While works on high-end devices (e.g.,

AMD Alveo) have shown promise for DNN inference [5],

their usage remains limited to data centers due to cost and

energy consumption. In contrast, commodity FPGAs offer an

appealing compromise for edge computing because of their

lower power footprint and ability to exploit parallelism, though

their limited resources constrain them to smaller networks.

The goal of this work is to demonstrate the feasibility of

splitting larger models, which can only fully fit on high-end

FPGAs (i.e., UltraScale+, etc.), on a cluster of commodity

FPGAs, using the FINN framework. This eventually could

lead to a low-power distributed edge solution capable to adapt

to a wide range of DNNs and tasks. We propose a way to

distribute DNN models inference over several FPGAs when

a single board is not sufficient to hold the whole DNN. We

leverage dynamic reconfiguration of a SoC-FPGA system.

The problem we address in this work is how to fit DNNs

into embedded devices while leveraging FPGAs suitability for

hardware acceleration and their low power consumption. In

addition, we are interested in the possibility to substitute a

dedicated high-end FPGA for a multiple of networked low-

power commodity FPGAs.

II. Methodology

Our approach enables the deployment of DNNs, typically

suited for high-end FPGAs (e.g., Alveo U250) due to their

size, onto commodity FPGAs by partitioning the model into

multiple sub-models. These sub-models are distributed across

a network of SoC-FPGAs. Our methodology provides a flexi-

ble and scalable approach to FPGA-based inference, enabling

larger models to run on low-cost hardware. While it does not

yet match the performance of high-end FPGAs, it represents a

step toward more accessible and efficient distributed inference

solutions. Our work uses FINN as a basis for hardware imple-

mentation to run inferences. FINN can convert a DNN model

to target an FPGA. It will take an ONNX model representing

the DNN architecture and its weights, convert it to multiple

intermediate representations and output a bitstream including

the model and custom Direct Memory Access (DMA) engines.

However, the intended use is to take a complete model to

produce a configuration that will fit in one single FPGA. Our

goal is to partition the model into smaller sub-models that

can each fit into a commodity FPGA and communicate with

each other to complete the overall model. To achieve this, we

split the ONNX model representing the DNN, use FINN to

generate a bitstream from each sub-model, use those bitstreams

to configure each board, and establish communication with

every board to run inferences.

A. Network splitting

To allow medium size DNN models to fit on low-power

FPGAs, it is necessary to split them to fit resource constraints.

FINN [4] is used to generate a preprocessed model and an

initial resource estimation. The resulting split is based on those

models. The objective of our automated splitter is to maximize

resource occupancy to reduce the number of bitstreams, since

dynamic reconfiguration and network operations are the most

costly in time (detailed in Section III-B). To find a suitable

cut, the ONNX graph is traversed, starting from the first layer.

For each node, the required resources estimate (i.e., LUTs, B-

RAMs, DSPs) are added, until they exceed available resources

for a given board. ONNX manipulations are then used to split

the preprocessed model. The resulting models are then fed

to FINN to generate FPGA design as well as a bitstream for

each sub-model. We modified FINN to support the Zedboard

for bitstream generation (since we do not use the Pynq OS,

we have no need for the Pynq overlay).

Fig. 1. Example of a full communication for a DNN divided into six
bitstreams, from an image input to the model classification (Sub model 6
output), from right to left in a sequential manner.

B. System design

Each SoC-FPGA board runs its own client/server, the client

sends data to the next board while the server waits and

processes data from the previous board (see Fig. 1). Sub-

models are generated beforehand (see subsection II-A) and

each board has all sub-models stored locally. Communications

are handled by a TCP client/server written in C++, and running

on the Processing System (PS) side, as shown in Fig. 1.

The server directly interacts with the Programmable Logic

(PL) part to trigger network inferences through the ARM

CPU. DNNs are fully executed on the FPGA fabric, with no

contribution from the CPU.

The client sends input data (images) to the first board, which

processes them, running the inference of its sub-model (on the

PL) then in turn passes the resulting data to the next board.

Once all sub-models processed the data, the output of the last

board (model classification) is returned to the client.

III. Experimental Results

A. Experimental Testbed

Our system is comprised of 6 Zedboards (using a Zynq

XC7Z020) connected to a 100 Mbps Ethernet switch. The

Zynq XC7Z020 is a heterogeneous system with a dual-core

processor (Cortex-A9) coupled with an FPGA (XC7Z020-

CLG484-1). Each board is set up with an identical version

of Petalinux v2024.1. Each board functions as an independent

server capable of being queried for the inference of a sub-

model they are hosting on their PL. All boards are connected

to a switch. A laptop acts as client and sends data to the first

board and received the model output from the last (see Fig. 1).

Time measurement has been taken client-side to account for

all network transit.

B. MobileNetV1

MobileNetV1 [6] is a CNN with 3.22 million parameters.

It is quantized, 4 bits for weights and activation. FINN github

lists this model as having a minimum hardware requirement

of the Alveo U250. Using our splitting script, we were able to

divide the DNN into 6 bitstreams that each can fit in a single

XC7Z020, achieving a throughput of 44.32 frames per second.

Table I shows our current results.

TABLE I
Comparison to existing work on MobileNetV1

Work FPGA Number of

boards

FPS Est. total

power (W)

Ours Zedboard 6 44.32 16.17
[7] UltraScale+ 1 17.85 n/a
[5] Alveo U280 1 3741 n/a
[5] Alveo U280 2 5923 159.8

IV. Conclusion

In this paper, we have presented a methodology to partition

neural networks across several commodity SoC-FPGA systems

to support larger models on devices with a very limited number

of resources. This solution supports an arbitrary number of bit-

streams and boards. Our first results are promising, supporting

MobileNetV1 with a throughput of 44.32 frames per second.

Future work includes optimization of communications, par-

titioning larger neural networks across more FPGA chips,

exploring the various trade-offs to partition such networks,

e.g., maximal resource usage per board, or type of resources

used, etc., as well as having different FPGAs contribute to the

same larger neural network over a heterogeneous system.

References

[1] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “FINN: A Framework for Fast, Scalable Binarized Neural
Network Inference,” in Proceedings of the 2017 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays, FPGA ’17, (New
York, NY, USA), p. 65–74, Association for Computing Machinery, 2017.

[2] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized Neural Networks: Training Deep Neural Networks with Weights
and Activations Constrained to +1 or -1,” Mar. 2016. arXiv:1602.02830.

[3] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,”
in Computer Vision – ECCV 2016 (B. Leibe, J. Matas, N. Sebe, and
M. Welling, eds.), (Cham), pp. 525–542, Springer International Publish-
ing, 2016.

[4] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu, M. Leeser, and K. Vissers, “FINN-R: An end-to-end deep-
learning framework for fast exploration of quantized neural networks,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 11, no. 3, pp. 1–23, 2018.

[5] T. Alonso, L. Petrica, M. Ruiz, J. Petri-Koenig, Y. Umuroglu, I. Stamelos,
E. Koromilas, M. Blott, and K. Vissers, “Elastic-df: Scaling performance
of dnn inference in fpga clouds through automatic partitioning,” ACM

Trans. Reconfigurable Technol. Syst., vol. 15, Dec. 2021.
[6] A. G. Howard, “Mobilenets: Efficient convolutional neural networks for

mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
[7] A. Sharma, V. Singh, and A. Rani, “Implementation of CNN on Zynq

based FPGA for Real-time Object Detection,” IEEE Internet of Things

Journal, pp. 1–7, July 2019.

Compact Modelling of Reconfigurable Field Effect

Transistors Towards Smart Sensing Applications

Amine Arsalane1, Bruno Neckel Wesling1,2, Yifan Wang1, José Maria Gonzalez-Medina3,

Lee-Chi Hung3, Oskar Baumgartner3, Yuxuan He2, Jens Trommer2,

Cristell Maneux1, Marina Deng1, François Marc1 and Chhandak Mukherjee1

1 IMS Laboratory, University of Bordeaux, CNRS UMR 5218, Bordeaux INP, Talence, France
2 Namlab gGmbH, Nothnitzer Strasse 64, 01187 Dresden, Germany

3Global TCAD Solutions GmbH, Vienna, Austria

Corresponding author: amine.arsalane@ims-bordeaux.fr

Abstract—In this paper, we present a physics-based compact
model for double-gate Reconfigurable Field-Effect Transistors
(RFET). By solving the current continuity equation and corre-
sponding charge calculations, we derive the expression of the
surface potential, effective Schottky barrier and the total drain
current. The proposed model demonstrates good agreement with
experimental data and aims to help analog IC designers to develop
RFET-based innovative circuits and smart sensing.

Index Terms—Reconfigurable field effect transistor, compact
modelling, Schottky barrier, drift-diffusion and drain current.

I. INTRODUCTION

Reconfigurable Field Effect Transistors (RFETs) are a

potential key-enabling technology that can be directly co-

integrated into the front-end-of-line (FEOL) of a standard

CMOS process offering a number of interesting applications

including analog smart sensor design. Specifically, we have

chosen a 22nm FDSOI Technology for the co-integration of

our RFETs. RFETs can be considered as a special variety

of Schottky barrier (SB) transistors that exhibit the ability

for both types of carriers conduction within a single device

through electrostatic doping, thus economizing on the chip

area consumed. These transistors are capable of switching

between p-type and n-type characteristics at runtime, which

is enabled by selecting the type of carriers tunnelling into the

undoped silicon channel through the Schottky barrier based

on the applied bias polarity of the polarity-control gate. In

this paper, we propose a fully physics-based compact model

for the carrier transport in double-gate RFET [1]. First the

architecture of the RFET device under test in Section II; Section

III then introduces our compact model derived from analytical

equations, and finally, Section IV discusses the results obtained

including model validation.

II. DEVICE STRUCTURE

Figure 1 schematically illustrates the structure of the double-

gate RFET under test [2]. The device under test in this study

was fabricated using modified I/O n-FETs from the 22 nm

FDSOI technology reported in [3]. The majority carrier polarity

in the device is determined by applying a voltage to the drain

side gate (DG), or the polarity-control gate, while current

conduction is controlled through the source side gate (SG)

similar to that of a SB FET. The basic unipolar control in our

device is driven by a selective injection of electrons and holes

into the undoped silicon channel region as illustrated in the

schematic band diagrams of Figure 2 in [1].

Fig. 1. Schematic of a Reconfigurable FET (RFET).

III. DEVICE MODELLING

In this section, we introduce the organisation of our compact

model. Compared to a previous compact modelling approach

[4], our model derives the net drain current based on surface

potential and charge calculations and the consideration of an

effective Schottky barrier height. The total device current is

obtained by solving the current continuity equations, which

solves for the resultant current between the current through

the Schottky-barrier contacts and the drift-diffusion current of

both carriers in the channel. As a first step, it is essential to

first solve the surface potential. To achieve this, we start with

the one-dimensional Poisson equation applied to an intrinsic

silicon nanowire channel [5]:

d2φ

dr2
+

1

r

dφ

dr
=

qni

εs

(

e
φ−Vn
uT − e

Vp−φ

uT

)

(1)

Although finding an analytical and explicit solution to equation

(1) is difficult, a piecewise approach is first adopted by

considering either electrons or holes, depending on the bias

Vgf = VG-VFB [5]. Moreover, by applying Gauss’s law, the

carrier densities respectively for the electrons and holes Qn

and Qp can be obtained [2]. These expressions allow for an

accurate evaluation of the surface potential and the majority

carrier densities, which are crucial for determining the total

current. At the Schottky contacts, electrons (or holes) can

tunnel through the Schottky barrier from the source or the drain,

depending on the applied bias conditions. Two main phenomena

govern carrier transport at the Schottky barrier: thermionic

emission and quantum tunneling (field emission). Thermionic

emission occurs when charge carriers acquire enough energy to

overcome the barrier, whereas tunneling allows carriers to pass

through it without exceeding the energy threshold. To simplify

calculations, the tunneling probability through the Schottky

barrier (SB) is set to unity if the barrier at some energy is

thinner than the tunneling distance dt and zero otherwise ref [5].

To accurately model carrier transport, we define the effective

Schottky barrier expression by considering both tunneling and

thermionic emission effects at the drain and source sides.

The effective Schottky barrier height (SBH) for electrons at

the source and drain side is given as:

ΦS
eff,SBn = ΦSBn − (1− e

−dt/λ)(φSS − Vbi − VS) (2)

ΦD
eff,SBn = ΦSBn − (1− e

−dt/λ)(φSD − Vbi − VD) (3)

Correspondingly the effective SBH for holes at the drain and

source side is:

ΦD
eff,SBp = ΦSBp + (1− e

−dt/λ)(φSD − Vbi − VD) (4)

ΦS
eff,SBp = ΦSBp + (1− e

−dt/λ)(φSS − Vbi − VS) (5)

Hence, the current flowing through the barrier is expressed as:

IT,n(p) = πR
2
A

∗

n(p)T
2
dev·

(

exp

(

−

φS
eff,SBn(p)

nN(P)uT

)

+ exp

(

−

φD
eff,SBn(p)

nN(P)uT

))

(6)

Once the carriers have crossed the Schottky barriers, their

transport within the channel is governed by the drift-diffusion

model. The drift-diffusion current in the channel is obtained

as [6]:

IDD,n(p) = µN (P) ·G ·

[

2uT (Qsn(p) −Qdn(p)) +

0.5×
(Q2

sn(p) −Q2
dn(p))

Cox

+Q0uT ln

(

Qdn(p) +Q0

Qsn(p) +Q0

)

] (7)

Where G =
2π·tSi

2·(D+L) . By equating drift-diffusion current

and the current through the Schottky barrier, we obtain the

expression for the final drain current.

IV. RESULTS AND DISCUSSION

Figure 3 illustrates the device transfer characteristics, compar-

ing experimental data [2] with the compact model simulations

on a semi-logarithmic scale. The figure presents the n-mode,

where the drain-gate voltage (DG) acts as the polarity gate, is set

to 1.8V , while the drain voltage VDS varies from 0.2V to 1.8V.

The same figure also depicts the p-mode, with VDG = −1.8V

and VDS ranging between −0.2V and −1.8V . The model

exhibits partial agreement with experimental data but does

not achieve a perfect fit. Some deviations are observed in

both modes, which can be attributed to asymmetric carrier

conduction and unaccounted effects such as trapping as well

as limitations in the model’s accuracy. Further refinements are

−1.6 −1.2 −0.8 −0.4 0.0 0.4 0.8 1.2 1.6
10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

D
ra

in
 c

ur
re

nt
 (A

)

VSG(V)

Measurements n-type
p-type

Model

|VDS| varies from 0,2 V to 1,8 V

VDS

VDS

VDG = 1,8VVDG = -1,8V

Fig. 2. Transfer characteristics (ID–VG) at different VDS for n− type and
p− type.

required to enhance its predictive capability and achieve better

alignment with experimental results.

V. CONCLUSION

This paper presents a physics-based compact model for

RFETs with double gate architectures. By solving the total

thermionic field emission current at the Schottky contacts

and the drift-diffusion current in the channel, the total drain

current is obtained. The model shows fair agreement with

experimental data for different bias configurations. Further

model improvement will be followed including additional

effects, such as trapping.

ACKNOWLEDGMENT

Funded by the European Union (Horizon Europe, SENSO-

TERIC, GA no. 101135316). Views and opinions expressed

are however those of the author(s) only and do not necessarily

reflect those of the European Union.

REFERENCES

[1] A. Heinzig, S. Slesazeck, F. Kreupl, T. Mikolajick, and W. M. Weber,
“Reconfigurable silicon nanowire transistors,” Nano Lett., vol. 12, no. 1,
pp. 119–124, 2012.

[2] N. Bhattacharjee et al., ”Multiple-Independent-Gate Reconfigurable FETs
Processed on Industrial 300 mm FDSOI,” in IEEE Electron Device Letters,
doi: 10.1109/LED.2025.3549531

[3] V. Sessi, M. Simon, S. Slesazeck, M. Drescher, H. Mulaosmanovic, K.
Li, R. Binder, S. Waidmann, A. Zeun, A.-S. Pawlik, et al., “Backbias
reconfigurable field effect transistor: a flexible add-on functionality for
22 nm fdsoi,” in 2021 Silicon Nanoelectronics Workshop (SNW), pp.
1–2, IEEE, 2021.

[4] C. Roemer et al., ”Physics-Based DC Compact modelling of Schottky
Barrier and Reconfigurable Field-Effect Transistors,” in IEEE Journal
of the Electron Devices Society, vol. 10, pp. 416-423, 2022, doi:
10.1109/JEDS.2021.3136981

[5] J. Zhang, P.-E. Gaillardon, and G. De Micheli, “A surface potential and
current model for polarity-controllable silicon nanowire FETs,” in Proc.
ESSDERC, Sep. 2015, pp. 48–51.

[6] B. Iniguez, D. Jimenez, J. Roig et al., “Explicit continuous model for long-
channel undoped surrounding gate MOSFETs,” IEEE Trans. Electron
Devices, vol.52, no.8, pp. 1868-1873, 2005.

Poster: A microarchitectural signals analysis

platform to craft Hardware Security Counters

1st Lucas Georget

EDF R&D / LAAS-CNRS

Palaiseau / Toulouse, France

lucas.georget@{edf/laas}.fr

2nd Vincent Migliore

LAAS-CNRS

Toulouse, France

vincent.migliore@laas.fr

3rd Vincent Nicomette

LAAS-CNRS

Toulouse, France

vincent.nicomette@laas.fr

4th Frédéric Silvi

EDF R&D

Palaiseau, France

frederic.silvi@edf.fr

5th Arthur Villard

EDF R&D

Palaiseau, France

arthur.villard@edf.fr

Abstract—Detecting malicious software or hardware behavior
during the operation of a computer system requires observables
from one or more abstraction layers of the system. However,
this abstraction tends to limit the ability to detect behavioral
deviations, especially for attack classes that exploit vulnerabilities
very close to the target hardware. Conversely, too low a level
of abstraction tends to significantly increase the complexity of
the system model, and therefore poses a number of difficulties
for the extraction and selection of relevant observables for
a given class of attack. In particular, processor performance
counters have been used as an indirect means of observing
microarchitecture behavior and detecting software attempting to
exploit hardware vulnerabilities. In order to improve the various
detection methods, we propose the construction of hardware
metrics designed from the outset for security, by studying the
correlation between signals from the microarchitecture and the
various classes of attack in the literature, targeting both usual
and industrial systems. By extension, this work aims to detect
attacks originating from hardware Trojans, the latter having the
effect of changing the behavior of a given microarchitecture.

Index Terms—Hardware Security Counters, Microarchitec-
tural signal anaysis, Runtime monitoring.

I. INTRODUCTION

The detection of low-level attacks, especially hardware

malware or software malware targeting microarchitectural

vulnerabilities, is quite complex. Depending on the System

on Chip (SoC) architecture it could turn out very differently.

Hardware Performance counters (HPC) for example, can be

used to trace hardware behavior and divert it for security

purposes. However, the further down we go, the more complex

it becomes to use observables. No hardware metrics were

originally designed for security purpose.

In an increasingly complex context, where software and

hardware are in close interaction, and where reconfigurable

hardware architectures are becoming more and more prevalent,

it is essential to be able to detect attacks with appropriate

mechanisms, at the right level of abstraction. Microarchitecture

signals are a good candidate for this, but it is very difficult to

identify the relevant signals for detecting a specific attack.

This is why it is essential to study the impact of attacks on

microarchitectural signals in order to build specific counters

that could be used to reference the internal state of our ma-

chines and detect attacks at microarchitectural level, as well as

hardware Trojans, on both traditional and industrial equipment.

A platform for capturing and analyzing microarchitectural

signals, enabling a variety of experiments to be carried out,

is a fundamental prerequisite. This article describes such an

experimental platform, which facilitates the building of spe-

cific hardware metrics for security by studying the correlation

between microarchitectural signals and different classes of

attack.

The II section gives a quick overview of the state of the

art. Section III then describes the platform we have designed

to enable the analysis of microarchitectural signals for the

definition of security hardware counters. Section IV finally

proposes some perspectives to this work.

II. RELATED WORK

A. Hardware Performance Counters

Hardware Performance Counters (HPC) have been used

many times for security purposes. Early work [1], in the con-

text of a fleet of IoT devices executing the same application,

sought to identify deviations in the behavior of one or more

devices compared to the others. An hybrid intrusion detection

system [2] was created, by means of a local analysis on

the devices themselves, along with a global analysis through

machine learning algorithms on a remote server, in order to

identify outliers in the fleet of devices. Some other research

works based on learning algorithms have used HPCs to detect

timing attacks on processor caches, as reported in Maria

Mushtaq’s thesis [3]. Against radio attacks, research works

proposed the development of a monitoring and tracing system

for lightweight systems [4].

B. Hardware Signal Probing

To reach a finer level of granularity and detect even more

subtle attacks, it is necessary to analyze various hardware

signals and try to identify which signals are relevant to detect

some specific class of attacks. This will simplify the number of

measures required, as they will be directly focused on security

and require less correlation. Some specific platforms, mainly

based on FPGA, are necessary to carry out such experiments.

But, to the best of our knowledge, few solutions are cur-

rently available for that purpose. At present, only debugging

solutions such as Xilinx ChipScope and Intel SignalTap are

available on the market. Mao et al [5] have been working

on the instrumentation of a RocketChip in Scala to provide

such a solution for software attacks that can be detected

at the microarchitectural level. Directly probing the signals

associated with attack classes/families for security purposes

enables them, with only very simple heuristics, to detect these

attacks quickly and thus build counters with the different

thresholds for each metric. But this work comes with severe

constraints on the amount of data that can be retrieved.

The purpose of our research work is thus to design and

implement a hardware platform, generic enough so that we can

observe and exports various microarchitectural signals from

the board (processor and peripherals) to perform a concrete

and complete analysis and correlate this data.

III. MICROARCHITECTURAL SIGNALS MONITORING

PLATFORM

A. Global view

The microarchitectural signal analysis platform should be

capable of efficiently process large quantities of data. Our

objective is to propose a flexible solution that captures a vector

of internal signals from a System on Chip’s microarchitecture

with no impact on the running software. Concretely, to carry

out such experiments, the solution requires:

• A reconfigurable target system, with an integrated logic

analyzer for extracting microarchitectural signals.

• A host system that collects this data, with good storage

capacity and good bandwidth with the target

• A high-performance system (perhaps the same as the

host) to further process and analyze the data.

For a fast and portable SoC deployment into the pro-

grammable logic, we used the emerging framework LiteX [6],

which is an easy way of building systems-on-a-chip, on FPGA

boards. After porting the board to the project, we were able

to run a small Linux system on it.

For the on-board logic analyzer, LiteScope [7] has been

integrated into the SoC to provide a view of the microarchi-

tectural signals. It is a small footprint and configurable tool

able to capture signals in real time, with limited resources and

without any perturbation of the system. It can be customized

for our needs.

B. Use-cases / Construction of Hardware Security Counters

The first case studies we want to experiment with this type

of platform mainly concern two categories of attack:

• Software attacks, such as Cache Side-Channel and

Return-Oriented Programming attacks.

• Hardware attacks at processor and peripheral levels.

The metrics collected during these various experiments will be

stored and analyzed (with processing via Machine Learning in

particular) in order to exhibit common detection criteria that

will be used to design relevant hardware security counters.

The counters could be based on thresholds of specific signals,

and probably on the correlation of values of several signals

according to different classes of attack. According to the

scenarios, on light architectures for the industry or complex

ones for computer systems, it will be possible to have different

characterization proper to each hardware.

IV. ONGOING AND FUTURE WORK

This platform can be used for instance to improve previous

work ([5]) focusing on the processor core for software attacks,

by extracting relevant information relative to the instructions

and memory accesses. At the moment, we only extract signals

from the main CPU. As such, we can only detect malware

whose behavior has an impact on these signals. We currently

extend the detection logic to the signal relative to the peripher-

als, as it seems more suited to detect malware inserted inside

the peripherals themselves or Trojan inserted at the CPU level

that need to communicate with the peripherals to execute their

malicious payload.

REFERENCES

[1] M. Bourdon, P.-F. Gimenez, E. Alata, et al., “Hardware-

performance-counters-based anomaly detection in mas-

sively deployed smart industrial devices,” in 2020 IEEE

19th International Symposium on Network Computing

and Applications (NCA), 2020, pp. 1–8. DOI: 10.1109/

NCA51143.2020.9306726.

[2] N. F. Polychronou, P.-H. Thevenon, M. Puys, and V.

Beroulle, “Madman: Detection of software attacks tar-

geting hardware vulnerabilities,” in 2021 24th Euromi-

cro Conference on Digital System Design (DSD), 2021,

pp. 355–362. DOI: 10.1109/DSD53832.2021.00060.

[3] M. Mushtaq, “Software-based Detection and Mitigation

of Microarchitectural Attacks on Intel’s x86 Architec-

ture,” Theses, Université de Bretagne Sud, Sep. 2019.

[Online]. Available: https : / / theses . hal . science / tel -

02988980.

[4] M. El-Bouazzati, “A Lightweight Host-based Intrusion

Detection System using a Hardware-Assisted Monitor

to detect Wireless Attacks Targeting Constrained IoT

Devices,” Theses, Université de Bretagne Sud, Dec.

2023. [Online]. Available: https:/ /cnrs.hal .science/tel-

04612764.

[5] Y. Mao, V. Migliore, and V. Nicomette, “Matana: A

reconfigurable framework for runtime attack detection

based on the analysis of microarchitectural signals,”

Applied Sciences, vol. 12, no. 3, 2022, ISSN: 2076-3417.

DOI: 10.3390/app12031452. [Online]. Available: https:

//www.mdpi.com/2076-3417/12/3/1452.

[6] F. Kermarrec, S. Bourdeauducq, J.-C. L. Lann, and H.

Badier, Litex: An open-source soc builder and library

based on migen python dsl, 2020. arXiv: 2005 . 02506

[cs.AR]. [Online]. Available: https : / / arxiv. org / abs /

2005.02506.

[7] EnjoyDigital, Litescope - a small footprint and config-

urable embedded fpga logic analyzer, 2015. [Online].

Available: https://github.com/enjoy-digital/litescope.

A Comprehensive Framework for Automated and

Scalable Testing of Analogue and Mixed-Signal

Circuits in On-Chip Systems

Jules KOUAMO

Univ. Grenoble Alpes, CNRS, Grenoble INP

TIMA, 38000 Grenoble, France

0009-0008-1075-5577

Emmanuel SIMEU

Univ. Grenoble Alpes, CNRS, Grenoble INP

TIMA, 38000 Grenoble, France

0000-0001-7649-3225

Michele PORTOLAN

IEEE Member

38000 Grenoble, France

0000-0002-8284-3823

Abstract—Testing analogue and mixed-signal circuits presents
significant challenges owing to their inherent signal variabil-
ity, non-linear behavior, and the lack of universal fault mod-
els. This paper proposes an integrated framework that com-
bines advanced software-based testing methodologies, machine
learning–driven fault detection, and enhanced Built-In Self-
Test (BIST) architectures to enable robust, automated on-chip
testing. By employing Monte Carlo simulations, state-of-the-art
signal transformation techniques, and innovative input stimulus
generation (e.g., Amplitude-Modulated Pseudo-Random Multi-
Level Sequences or APRMLS), the proposed system ensures
high fault detection accuracy and improved test scalability while
reducing production costs. Experimental case studies validate
the approach, demonstrating its efficacy and resource efficiency
across various circuit types.

Index Terms—Analogue Circuit Testing, Mixed-Signal Sys-
tems, Automated Test Methodologies, Machine Learning, Built-In
Self-Test, On-Chip Testing, APRMLS.

I. INTRODUCTION AND BACKGROUND

The rapid evolution of System-on-Chip (SoC) technologies,

driven by advances in Very-Large-Scale Integration (VLSI),

has integrated complex analogue and mixed-signal compo-

nents into modern electronic systems. Unlike digital circuits,

which benefit from structural test methodologies, analogue and

mixed-signal circuits involve continuous signals and non-linear

behaviors, complicating fault modeling and detection. The

rising demand in high-reliability sectors such as automotive,

aerospace, and industrial control underscores the need for

automated, scalable, and cost-effective testing solutions.

Historically, testing analogue systems relied on manual

calibration and heuristic methods, leading to high test times

and variable outcomes. Recent advancements in embedded

frameworks and machine learning (ML) have enabled high-

precision automated fault detection. Moreover, numerous stan-

dards like IEEE 1149.1, IEEE 1500, and IEEE 1687 have

improved access to circuit internals [1], but their adaptation

to analogue domains remains challenging due to signal vari-

ability. Dedicated approaches have explored tolerance-based

methods and ML classifiers leveraging signal transformations

and Monte Carlo simulations.

Recent studies highlight the use of ML algorithms for

detecting parametric faults through simulations [2], [3]. Con-

currently, BIST architectures with advanced stimulus genera-

tion and output response analyzers have been developed for

both linear and non-linear circuits [4], [5]. In this paper,

we synthesize advancements in software methodologies, ML-

based fault detection, and enhanced BIST architectures to

propose a holistic framework for automated on-chip testing

of analogue and mixed-signal circuits.

II. PROPOSED INTEGRATED FRAMEWORK

Our proposed framework integrates three major components

that together form a comprehensive solution to automate

testing in on-chip environments:

A. Advanced Software-Based Testing Methodologies

To overcome the challenges of mixed-signal testing, our

approach begins by segregating the test flow into three distinct

but interconnected phases:

• Digital Testing Phase: In this phase, conventional digital

test techniques (e.g., IJTAG) are employed to ensure the

controllability and observability of circuit elements.

• Analogue Testing Phase: Here, the emphasis is on per-

formance evaluation through functional testing, involving

the measurement of output characteristics under various

input stimuli.

• Integrated Testing Phase: This phase bridges the digital

and analogue domains by introducing test protocols,

supported by PDL from IJTAG, that account for the

interaction between the two, thereby facilitating a unified

test strategy.

B. Machine Learning-Driven Parametric Fault Detection

The second component of our framework leverages machine

learning to address the challenges of parametric fault detec-

tion in analogue circuits. We generate extensive datasets by

performing Monte Carlo simulations that introduce variations

in component values. Signal transformations, including time-

frequency domain analyses (e.g., via FFT and STFT), are

applied to extract salient features from the resultant signals.

These features are then used to train classification models that

can accurately distinguish between fault-free and faulty circuit

behaviors. A novel evaluation metric, denoted as Mtest, is in-

troduced to jointly consider prediction accuracy, computational

latency, and deployment complexity—particularly important

for embedded applications.

C. Enhanced Built-In Self-Test (BIST) with APRMLS

The third component enhances traditional BIST architec-

tures by integrating an on-chip APRMLS generator (see Fig-

ure 1). This generator is capable of producing test stimuli

with multiple amplitude levels, significantly improving the

excitation of both linear and non-linear system responses.

Coupled with an ML-based Output Response Analyzer (ORA),

the improved BIST architecture reduces external dependency

on high-cost test equipment, facilitates low-power operation,

and supports rapid, scalable testing. This approach not only

enhances fault detection accuracy but also ensures seamless

integration into compact SoC designs.

Fig. 1: Top-Level Architecture of the On-Chip BIST System

III. METHODOLOGY

A. Data Generation and Signal Acquisition

Data generation is achieved via Monte Carlo simulation

frameworks in which circuit behavior is evaluated under a wide

range of process variations. Input stimuli, such as APRMLS

and conventional PRBS, are applied to the Circuit Under Test

(CUT), and the corresponding output signals are sampled at

rates satisfying the Nyquist criterion. The resulting dataset

is labeled based on a comparison of observed performance

metrics with manufacturer-specified tolerances, distinguishing

between fault-free and defective circuit conditions.

B. Machine Learning Model Development

The labeled datasets are used to train various classification

models aimed at fault detection. We explore a suite of models

including Random Forests, Support Vector Machines, Con-

volutional Neural Networks, and Recurrent Neural Networks.

Key emphasis is placed on optimizing the models for deploy-

ment constraints typical of embedded systems. In this regard,

the deployment-oriented metric Mtest is defined as follows:

Mtest = w1P + w2

(

1−
Tpred

Tmax

)

+ w3

(

1−
Cdeploy

Cmax

)

(1)

where P is the predictive accuracy, Tpred the prediction la-

tency, Cdeploy the deployment complexity, and w1, w2, w3 are

weighting coefficients.

C. On-Chip Integration and Autonomous Testing

The final stage of our methodology involves integrating

the optimized ML models and APRMLS generators within a

CMOS-based on-chip architecture. This integration is carefully

engineered to minimize external interference, reduce signal

degradation, and ensure that test operations can be performed

autonomously. The system supports real-time decision making,

allowing it to rapidly conclude whether a circuit meets the

required operational criteria based solely on externally mea-

surable parameters.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Our framework has been validated on benchmark circuits

including RLC band-pass filters and second-order Sallen-

Key filters. Detailed simulation studies demonstrate that the

integrated approach achieves fault detection accuracies ex-

ceeding 99% for simpler circuits when using enhanced in-

put stimuli and optimized ML models. Moreover, the use

of APRMLS in the BIST architecture has shown signifi-

cant improvements in excitation uniformity and reduction in

computational overhead when compared to traditional PRBS-

based methods. The experimental results also highlight the

trade-offs between model complexity, deployment cost, and

prediction latency—encapsulated in our Mtest metric. These

findings underscore the potential of our framework for scalable

and cost-effective on-chip testing, particularly in resource-

constrained environments.

V. CONCLUSION

This paper has presented a holistic framework that combines

advanced software testing methodologies, machine learn-

ing–based fault detection, and enhanced BIST architectures

to address the complexities of testing analogue and mixed-

signal circuits in modern SoCs. The integrated approach not

only demonstrates high accuracy in fault detection but also

ensures scalability and cost efficiency by embedding critical

test functionalities on-chip. Future research will focus on

further refining the deployment aspects, reducing power con-

sumption, and extending the framework to a broader range of

circuit types to meet the evolving demands of next-generation

electronic systems.

REFERENCES

[1] M. Portolan, M. Keim, J. Rearick, and H. Ehrenberg, “Refreshing the
jtag family,” in 2023 IEEE 41st VLSI Test Symposium (VTS), pp. 1–7.

[2] S. Srimani and H. Rahaman, “Testing of analog circuits using statistical
and machine learning techniques,” in 2022 IEEE International Test

Conference (ITC). IEEE, 2022, pp. 619–626.
[3] H.-G. Stratigopoulos and Y. Makris, “Error moderation in low-

cost machine-learning-based analog/rf testing,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 2,
pp. 339–351, 2008.

[4] H. Malloug, M. J. Barragan, S. Mir, E. Simeu, and H. Le-Gall, “Mostly-
digital design of sinusoidal signal generators for mixed-signal bist ap-
plications using harmonic cancellation,” in 2016 IEEE 21st International

Mixed-Signal Testing Workshop (IMSTW). IEEE, 2016, pp. 1–6.
[5] A. Dhayni, S. Mir, L. Rufer, and A. Bounceur, “Pseudorandom functional

bist for linear and nonlinear mems,” in Proceedings of the Design

Automation & Test in Europe Conference, vol. 1. IEEE, 2006, pp. 1–6.

2

Hybrid Intrusion Detection Systems for Internet of

Things Gateway Against Wireless Attacks

Tianxu Li

UMR 6285, Lab-STICC

Université Bretagne Sud

Lorient, France

tianxu.li@univ-ubs.fr

Philippe Tanguy

UMR 6285, Lab-STICC

Université Bretagne Sud

Lorient, France

philippe.tanguy@univ-ubs.fr

Camille Monière

UMR 6285, Lab-STICC

Université Bretagne Sud

Lorient, France

camille.moniere@univ-ubs.fr

Guy Gogniat

UMR 6285, Lab-STICC

Université Bretagne Sud

Lorient, France

guy.gogniat@univ-ubs.fr

Abstract—The exponential growth of the Internet of Things
(IoT) and the multiplicity of available protocols have increased
the attack surface of gateways in machine-to-machine networks.
Thus, early detection of attacks has become an ever-growing
concern, often using time- and energy-consuming cloud com-
puting resources, and targeting specific protocols. This paper
deals with intrusion detection systems (IDS) to detect wireless
attacks against IoT gateways. Indeed, given the complexity and
multiprotocol nature of multi-tenant IoT gateways, traditional
security solutions often fall short. We propose a novel hybrid
IDS that combines software and hardware designed to provide
efficient and robust intrusion detection tailored for multiprotocol
IoT gateways.

Index Terms—Internet of Things, IoT Security, Gateway,
Wireless communication, Intrusion Detection System

I. INTRODUCTION

In this era of rapid digitalisation, the Internet of Things

(IoT) has become an important part of our society. It is

used in many key areas, such as healthcare, industry, and

transportation [1]. The IoT enables diverse physical devices to

collect or exchange data through networks, but also introduces

new risks in wireless communications. IoT gateway, as a

hub that connects these devices and transmits data to other

processing systems, wireless attacks against it (e.g., jamming

attack, replay attack) can affect the stability and reliability of

the entire network or even lead to data leakage [2].

Intrusion Detection Systems (IDS) have been proven to be

effective tools to monitor network activity, identify potential

threats, and generate timely alerts for response. Hybrid IDS, in

particular, with the flexibility of software and the fast respon-

siveness of hardware, offer efficient processing capabilities and

rapid response times, making them ideal for fortifying IoT

gateways.

This paper introduces our proposed hybrid IDS that is

deployed on IoT gateways. It detects multiple wireless attacks

against several protocols by collecting metrics from different

layers of the system to enhance the security of IoT gateways.

II. IOT GATEWAY AND IDS FOR IOT DEVICES

An IoT gateway acts as a communication hub, aggregating

data from various sensors and devices and transmitting it to

higher-level systems. In addition, it often performs preliminary

work financed by the ANR Project TrustGW, grant ANR-21-CE39-0005

data processing tasks, such as filtering and encryption, before

transmitting data for further analysis or storage [3].

The TrustGW ANR project1 aims to enhance the security

of IoT gateways by adding advanced protection features.

The objective is to develop a dynamically reconfigurable and

trusted heterogeneous software-hardware gateway architecture.

The gateway supports both LoRa and IEEE802.15.4 wireless

communication protocols, with each protocol operating inde-

pendently on virtual machines managed by a hypervisor.

Within this architecture, an IDS enhances gateway security

by collecting metrics from multiple layers of the system,

such as the host microarchitecture and the network PHY and

MAC layers. By analyzing these indicators, the IDS can detect

wireless attacks in real time and issue alerts to administrators

upon identifying suspicious activity. Although IDS for IoT

are already discussed in the literature [4], current research is

restricted to single attack types targeting single protocols [5],

thus demonstrating the need for a multimodal IDS.

III. OPEN RESEARCH CHALLENGES

The IDS proposed in the paper is designed to detect a range

of wireless attacks targeting the gateway. It adopts a hybrid

implementation and is deployed directly within the gateway,

enabling faster response times while conserving processor and

memory resources. Moreover, the IDS must support intrusion

detection across multiple wireless protocols.

The key challenges include:

• Support of multiple wireless communication protocols

• Collecting metrics from both host and network layers

• Detection of multiple wireless attack types

IV. PROPOSED IDS

Figure 1 illustrates the SoC architecture of the gateway’s

wireless communication unit. This unit is composed of a

RISC-V core (CVA6), RF modules, and our off-core hardware-

based IDS component. The hardware IDS accelerates data

processing and decision-making, enabling rapid response to

threats while minimizing the computational load on the base-

band processor. We adopted an off-core deployment strategy,

as previous research has shown that this approach not only

1https://trustgw.projects.labsticc.fr/

SoC BUS

Peripheral
BUS

Baseband
Processor

RISC-V Core
(CVA6)

Software

VM 2

Wireless
Protocol 2

Hypervisor

VM 1

Wireless
Protocol 1

VM 3

HPM
Collector

Hardware Intrusion Detection System

Packet
Parser

Metrics
Distributor

Metrics for
Host IDS

Metrics for
Network IDSMetrics

Collector

ML Decision Models

Preprocessing
Model

Attack
Classifier

Radio Frequency Models

Protocol 1 PHY Module

Protocol 2 PHY Module

BUS
Bridge

Modified
Models
for IDS

Support
for

Host IDS

Support
for

Network
IDS

Legend :

Main
Decision
Models

Alert
Handler

Original
Models

Fig. 1. Proposed hybrid IDS architecture for IoT Gateway

ensures high performances but also facilitates future reconfig-

uration [6]. Due to the diversity of wireless attack types, the

IDS must collect metrics from multiple layers of the system.

Host-level monitoring, illustrated in purple in the figure,

represents the metric collection component of the host IDS. It

gathers data from Hardware Performance Monitor (HPM) to

analyze the behavior of the CPU during a protocol execution.

The orange and yellow components in the figure correspond

to the wireless communication subsystem, which supports

Network-level monitoring. We modified the bridge between

the peripheral bus and the SoC bus to intercept raw data

traffic, then transmit it to the packet parser to extract PHY

and MAC layer metrics. It can also request metrics directly

from peripherals, without software involvement.

For metrics preprocessing, a machine learning-based ap-

proach is necessary due to the time-series nature and the

high dimensionality of the collected metrics. Long Short-

Term Memory (LSTM) is particularly well-suited for our

scenario [7].

As for decision-making, Support Vector Machine (SVM) is

suitable for classification [8]. It can be used to determine the

attack’s type based on the post-processed data from LSTM.

V. CONCLUSION

In this paper, we propose an IDS for IoT gateways which

can detect multiple types of attacks targeting different wireless

communication protocols. While still in progress, the IDS has

been proven to successfully identify jamming attacks against

an individual node. We have also conducted preliminary tests

of the HPM monitor in simulation. Currently, we are actively

refining the bus bridge and the Packet parser components, and

we are preparing more comprehensive datasets to train and

deploy complete machine learning models.

REFERENCES

[1] S. H. Shah and I. Yaqoob, “A survey: Internet of things (IOT) technolo-
gies, applications and challenges,” in 2016 IEEE Smart Energy Grid

Engineering (SEGE), 2016. DOI: 10.1109/SEGE.2016.7589556.
[2] E. Schiller, A. Aidoo, J. Fuhrer, J. Stahl, M. Ziörjen, and B. Stiller,

“Landscape of IoT security,” Computer Science Review, 2022. DOI: 10.
1016/j.cosrev.2022.100467.

[3] G. Beniwal and A. Singhrova, “A systematic literature review on IoT
gateways,” Journal of King Saud University - Computer and Information

Sciences, 2022. DOI: 10.1016/j.jksuci.2021.11.007.
[4] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,

“Network intrusion detection for IoT security based on learning tech-
niques,” IEEE Communications Surveys & Tutorials, 2019. DOI: 10 .
1109/COMST.2019.2896380.

[5] X.-H. Nguyen, X.-D. Nguyen, H.-H. Huynh, and K.-H. Le, “Realguard:
A Lightweight Network Intrusion Detection System for IoT Gateways,”
Sensors, 2022. DOI: 10.3390/s22020432.

[6] T. Li, M. El-Bouazzati, C. Monière, P. Tanguy, and G. Gogniat,
“Comparison Between In-Core Hardware IDS, Off-Core Hardware IDS
and Software IDS,” in Design and Architecture for Signal and Image

Processing, J. Lorandel and A. Kamaleldin, Eds., Cham: Springer
Nature Switzerland, 2025, pp. 108–120, ISBN: 978-3-031-87897-8. DOI:
10.1007/978-3-031-87897-8 9.

[7] D. Wu, Z. Jiang, X. Xie, X. Wei, W. Yu, and R. Li, “LSTM Learning
With Bayesian and Gaussian Processing for Anomaly Detection in
Industrial IoT,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 8, pp. 5244–5253, Aug. 2020, ISSN: 1941-0050. DOI: 10.1109/TII.
2019.2952917. (visited on 04/11/2025).

[8] F. Osisanwo, J. Akinsola, O. Awodele, J. Hinmikaiye, O. Olakanmi,
J. Akinjobi, et al., “Supervised machine learning algorithms: Classifi-
cation and comparison,” International Journal of Computer Trends and

Technology (IJCTT), vol. 48, no. 3, pp. 128–138, 2017.

Protection des SoCs par l’isolation : état de l’art et

prospectives

Simon Baissat-Chavent, Lilian Bossuet, Cédric Killian

Université Jean Monnet, UMR CNRS 5516 Laboratoire Hubert Curien

Saint-Etienne, France

Abstract—L’essor des dispositifs connectés, soutenu par les
systèmes sur puce (SoC), augmente le nombre de cibles
disponibles à un attaquant. Les Trusted Execution Environments
(TEE) isolent les opérations critiques dans un environnement
sécurisé, protégé par une base de code de confiance (TCB). Ce
document explore les principes d’isolation des TEE et propose
une taxonomie des solutions existantes, soulignant leurs avantages
et inconvénients

Index Terms—Strategies d’isolation, Trusted Execution Envi-
ronments, System-on-Chip

I. INTRODUCTION

L’électronique fait vendre et les industriels l’ont bien com-

pris. Quel produit de la vie courante n’existe pas aujourd’hui

dans une version ”connectée” ? Télévisions, lampes, voitures...

Certains réfrigérateurs embarquent désormais des configura-

tions dignes de smartphones avec un OS Android complet.

Or, la multiplication de ces composants intelligents implique

inévitablement une augmentation significative du nombre de

cibles potentielles pour un attaquant.

Ce déploiement massif de l’électronique est notamment dû

à une amélioration des performances des composants, en par-

ticulier grâce à l’utilisation de systèmes sur puce hétérogènes

ou SoC (System-on-Chip). Ces systèmes regroupent sur une

même puce des composants de nature différente, tels que

des processeurs, des mémoires, des accélérateurs matériels et

des périphériques. Cependant, cette diversité de composants

présente un inconvénient majeur pour la sécurité. Chaque

composant introduit des vulnérabilités qui lui sont propres, et

les interactions entre les composants peuvent également ouvrir

de nouveaux vecteurs d’attaques. Aussi, l’effort nécessaire

pour assurer la sécurité du SoC augmente avec le nombre

de composants qu’il contient. En réponse à ces défis, de

nombreux travaux ont proposé des solutions pour renforcer

la sécurité, soit au niveau des composants individuels, soit au

niveau de l’architecture globale du SoC. Une approche très

répandue dans la littérature consiste à isoler les composants

logiciels et matériels critiques d’un SoC (System on Chip) des

autres composants du SoC qui pourraient être compromis par

un adversaire. Cette approche limite ainsi la capacité d’un code

malveillant à espionner un composant critique sur le SoC. Un

riche écosystème de systèmes en isolation (Trusted Execution

Environments ou TEE) existe, marqué par une forte dualité

entre le domaine académique et le domaine commercial, ce

dernier étant dominé par un petit nombre de solutions. Cette

Projet ARSENE, PEPR Cybersécurité

dichotomie peut, en partie, s’expliquer par le surcoût induit par

le déploiement de ces solutions sur les performances générales

du système.

Dans ce document, nous présenterons le principe d’isolation

sur lequel reposent les architectures TEE puis nous pro-

poserons une taxonomie de ces architectures.

II. PROTECTION PAR ISOLATION

Le modèle d’attaquant généralement considéré dans les

travaux auxquels ce document s’intéresse consiste en un

adversaire logiciel uniquement avec la capacité de corrompre

l’ensemble des composants logiciels, y compris les couches

privilégiées de l’OS. Un tel attaquant est donc en mesure

d’accéder aux espaces mémoire d’autres programmes ou

d’exécuter un code malveillant en parallèle d’un programme

cible, voire de prendre le contrôle de certains drivers. Aussi,

dans ce contexte, l’exécution de code critique manipulant des

données sensibles, comme un algorithme de chiffrement, est

très risquée, l’attaquant étant en mesure d’extraire les données

sensibles telles que les clés de chiffrement.

Les architectures en isolation proposent de pallier ce

problème en introduisant une ségrégation entre deux envi-

ronnements d’exécution distincts. Le premier, appelé monde

sécurisé, est réservé aux exécutions dépendantes de données

sensibles ou de systèmes critiques du SoC (e.g. timer, stock-

ages sécurisés, opérations cryptographiques). Le second, ap-

pelé monde normal, est dédié au reste des exécutions. Par

construction, aucun code du monde normal n’est en mesure

d’accéder aux exécutions du monde sécurisé. Ces architectures

assument l’existence d’une base de code de confiance (Trusted

Base Code ou TCB), non modifiable par l’adversaire, qui sera

exécutée dans le monde sécurisé. Elle est soumise à un impor-

tant processus de vérification et de validation à sa conception

pour s’assurer qu’elle n’introduit aucune vulnérabilité. Aussi,

l’effort de conception d’une TEE augmente significativement

avec la taille de la TCB.

Cette ségrégation peut être implémentée de nombreuses

manières, chacune avec leurs avantages et leurs faiblesses.

Dans la suite, nous proposons une taxonomie des différentes

solutions permettant l’isolation.

III. TAXONOMIE DES ARCHITECTURES TEE

Parmi les architectures proposées dans la littérature, on

identifie deux grandes stratégies d’isolation.

La première est l’isolation logicielle avec support matériel,

dans laquelle la ségrégation entre les mondes normal et

sécurisé s’effectue au niveau logiciel. Les deux contextes

s’exécutent l’un après l’autre sur les mêmes composants

matériels (e.g. CPU) créant ainsi un partitionnement temporel

du SoC. Bien que l’isolation ait lieu au niveau logiciel, ces

architectures s’appuient sur des composants matériels pour

assurer l’isolation. L’architecture la plus connue mettant en

œuvre cette stratégie d’isolation est la solution ARM Trust-

Zone [1], illustrée en Figure 1a. Le monde normal et le monde

sécurisé s’exécutent sur les cœurs ARM, dont les changements

de contexte sont contrôlés par un moniteur de sécurité dans

le firmware du processeur, appelé ”monitor mode”. Celui-ci

est chargé de nettoyer l’ensemble des ressources partagées

entre les deux mondes (normal et sécurisé) comme les caches.

Le monde en cours d’exécution est contrôlé par un registre

dans les SCR (security configuration register) du processeur.

L’architecture TrustZone est une solution commerciale pro-

posée par ARM et fait partie des protections les plus répandues

pour les SoC. Plusieurs entreprises ont créé leur propre

implémentation de TrustZone, comme le QSEE de Qualcomm.

SiFive propose une architecture similaire à TrustZone avec

WorldGuard [7] pour leur cœur RISCV, mais introduit la

possibilité de déployer plusieurs mondes normaux et sécurisés,

permettant ainsi une isolation plus fine. De nombreuses solu-

tions ont également été proposées dans le domaine académique

comme Sanctuary [4] ou CURE [2].

La seconde stratégie d’isolation est l’isolation matérielle.

Cette approche isole les exécutions sécurisées des exécutions

normales en les exécutant sur des composants matériels dédiés.

Cela conduit souvent à un modèle d’isolation plus robuste,

mais au prix d’une augmentation significative du coût silicium.

L’architecture HECTOR-V [6] (voir Figure b) est un très bon

exemple d’isolation matérielle : l’isolation est assurée par

un coprocesseur dédié appelé ”RISC-V Secure Co-Processor”

ou RVSCP, qui est exclusivement dédié à l’exécution du

monde sécurisé. Aucune ressource micro-architecturale (cache,

prédicteur de branchement. . .) n’est partagée entre le monde

normal et le monde sécurisé, permettant ainsi de produire

une isolation robuste même aux attaques sur la microarchi-

tecture. D’autres solutions proposent une isolation matérielle

exploitant la nature hétérogène des SoC, comme par ex-

emple TrustSoC [5] . Cette architecture propose une ex-

tension d’ARM TrustZone à l’ensemble d’un SoC par le

déploiement de wrapper autour des différentes IPs du SoC.

Ces wrapper sont chargés de filtrer les interactions sur le SoC

afin d’empêcher les accès illégaux issus de composants non

sécurisés. Chaque IP est ainsi assigné à un monde et seuls les

IPs du monde sécurisé sont autorisés à accéder aux données

sensibles.

IV. CONCLUSION ET TRAVAUX FUTURES

Il est intéressant d’observer que la quasi-totalité des solu-

tions commerciales de TEE s’appuie sur une isolation logi-

cielle avec support matériel. Cela est en partie dû à leur

plus faible impact sur les performances du SoC comparé à

Hardware

Normal world

Untrusted app

Rich OS

Client app

Secure world

Trusted OS

TEE Core

TEE Driver

Client app TEE API

TEE Functions

Trusted appTEE API

ARM Trusted Firmware Monitor mode

(a) ARM TrustZone

Application processor

Rich OS

Untrusted app Trusted app

System bus

Peripheral

TCB

HardwareHardware

Security monitor
Wrapper

Peripheral

Wrapper

RVSCP

(b) HECTOR V

Fig. 1: Exemples de solutions d’isolation (a) logicielle avec

support matériel et (b) matérielle

une solution basée sur l’isolation matérielle. Cependant, ce

choix résulte bien souvent en une plus faible isolation et

plusieurs papiers ont déjà démontré la possibilité de passer

outre l’isolation pour accéder à des données sensibles du

monde sécurisé depuis le monde normal [3].

Le développement des Soc-FPGA ouvre de nouvelles op-

portunités dans le domaine des TEEs matériels en permettant

le déploiement d’IPs dédiées au contrôle de l’isolation dans

les cœurs du SoC. Dans nos travaux futurs, nous étudierons

la possibilité d’exploiter le caractère hétérogène des SoC pour

permettre le déploiement de TEE agnostiques de l’architecture

des processeurs présents sur le SoC. L’objectif est de permettre

le déploiement dynamique d’environnements sécurisés héritant

leurs propriétés d’une IP montée sur le SoC.

REFERENCES

[1] T. Alves and D. Felton. Trustzone: Integrated hardware and software
security. ARM Inf. Q., 3(4):18–24, 2004.

[2] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.
Sadeghi, and E. Stapf. CURE: A security architecture with CUstomizable
and Resilient Enclaves. In 2021 USENIX Security Symposium, pages
1073–1090, USA, 2021. USENIX Association.

[3] E. M. Benhani, C. Marchand, A. Aubert, and L. Bossuet. On the security
evaluation of the ARM TrustZone extension in a heterogeneous SoC.
In 2017 IEEE International System-on-Chip Conference (SOCC), pages
108–113, USA, 2017. IEEE.

[4] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf. SANCTU-
ARY: ARMing TrustZone with user-space enclaves. In 2019 Symposium

on Network and Distributed System Security (NDSS), USA, 2019. IEEE.
[5] R. Milan, L. Bossuet, L. Lagadec, C. A. Lara-Nino, and B. Colombier.

TrustSoC: Light and efficient heterogeneous SoC architecture, secure-by-
design. In 2023 Asian Hardware Oriented Security and Trust Symposium

(AsianHOST), USA, 2023. IEEE.
[6] P. Nasahl, R. Schilling, M. Werner, and S. Mangard. HECTOR-V: A

heterogeneous CPU architecture for a secure RISC-V execution environ-
ment. In 2021 ACM Asia Conference on Computer and Communications

Security (AsiaCCS), page 187–199, USA, 2021. ACM.
[7] SiFive. Securing the RISC-V revolution : WorldGuard, 2023.

Timing Prediction of Deep Neural Networks on

Multi-Core Platforms with Memory Hierarchy

Effects

Antoine CANTIN1,2, Sebastien LE NOURS1, Sebastien PILLEMENT1,

Domenik HELMS2, Kim GRÜTTNER2, and Ralf STEMMER2

1Nantes Univ, CNRS, IETR UMR 6164, F-44000 Nantes, France, Email : antoine.cantin@etu.univ-nantes.fr
2German Aerospace Center (DLR), Oldenburg, Germany

Abstract—In the domain of edge computing, the implementa-
tion of Deep Neural Networks (DNNs) on small, resources-limited
platforms is difficult. In order to optimize the inference of such
systems, performance estimation is required. In that context,
we propose a novel evaluation flow for mapping a DNN on
embedded multi-core CPU devices. Our main contribution is to
take into consideration the effect of a complex memory hierarchy
on the computation time. The proposed framework is based on
a SystemC simulation and calibrated with samples collected on
a prototype.

Index Terms—Embedded AI, non-functional properties evalu-
ation, DNN implementation

I. INTRODUCTION

In recent years, the significant increase in demand for

Internet-of-Things (IoT) applications and the appearance of

new edge computing Machine Learning (ML) algorithms have

allowed the emergence of the embedded Artificial Intelligence

(AI) paradigm. One challenge is to integrate Deep Neural Net-

works (DNNs) on devices that have limited resources. On such

platforms, the inference phase of a DNN must respect strict

constraints such as energy, memory size and timing. As such,

optimizations have to be conducted to make the deployment

of networks on embedded devices as efficient as possible.

However, the involved complexity and the massive design

space for both DNN algorithms and hardware architectures

make it difficult to find optimized solutions. In response to this

problem, Design Space Exploration (DSE) flows were created

to explore the multiple possibilities and find designs that best

fulfill the requirements. In order to improve the quality of

DSE, an evaluation flow is needed to predict quickly and

precisely the execution time and the energy consumption of

embedded platforms running DNNs.

In the literature, we identified three main methods of predic-

tion for evaluation purposes. First, analytical modeling, where

pure theory and mathematical formulas are used to model the

system. Then, behavioral simulation, where the behaviors of

all the components in the device are described individually and

This work is supported by France 2030 Priority research program and
equipment for artificial intelligence PEPR AI, under the ref ANR-23-PEIA-
0009.

simulation tools predict how they interact with each other. And

finally rapid prototyping, where measurements are performed

on a prototype of the system. These methods can be compared

in terms of precision, speed, scalability and required modeling

effort. For example, behavioral simulation is more precise than

analytical modeling because it can capture microarchitectural

details, handle unpredictable events and consider complex

interactions between devices. However, this accuracy comes

with a lack of scalability because the simulation execution

becomes heavier as the complexity of the platforms grows. A

few works such as [1] also proposed hybrid methods which

combine the three latter. It takes advantage of the benefits of

each approach to produce fast yet accurate prediction for DSE.

In this work, we propose a new hybrid timing evaluation

tool. We aim to optimize the mapping of a DNN on a multi-

core CPU architecture. On Fig. 1, the DNN is partitioned

into four clusters with a neuron level of granularity and each

cluster is executed on the corresponding CPU. In our work,

we focus on the impact of a complex memory hierarchy on the

computation time to address large size DNNs. In consequence,

the proposed architecture illustrated with Fig. 1 contains mul-

tiple CPUs communicating through a shared internal memory

and getting data from a large-sized memory. To improve the

performance of this model and limit the access to the large

memory, data cache memories and DMA management are

being considered in the scope of this work.

Inter CPU Communication Shared Memory

DMALarge-sized memory

CPU1

Instr mem

Data Cache

CPU2

Instr mem
Data Cache

CPU3

Instr mem
Data Cache

CPU4

Instr mem
Data Cache

DNN parameters

Fig. 1. Deployment of a DNN on a multi-core architecture with the considered
memory hierarchy

II. RELATED WORK

Several works have already developed such frameworks for

architectures with multiple Processing Elements. For example,

the article [1] presents a timing and power hybrid modeling

flow for multi-core CPU. It is accurate (error is less than 3%)

but limited in terms of memory architecture. On the other

hand, a recent work [2] used simpler evaluation methods for

a more complex heterogeneous architecture containing two

multi-core CPUs, a GPU and a NPU. This approach aims to

predict the throughput of multiple DNNs running in pipeline.

Some other papers focus more on compressing the network

with pruning or quantization methods. A good example is

Super Slash [3]. In this article, the authors noticed that a DNN

running on an accelerator can require a different number of

external memory accesses depending on the chosen pruning

strategy. Therefore, they created an evaluation and DSE flow

for evaluating multiple pruning approaches. NetAdapt [4]

propose a rapid prototyping solution. Here, direct metrics

such as real latency are measured instead of proxy metrics

(MACs, FLOPs, etc). The former capture the real effect of the

execution of a DNN on the performance while the latter are

easier to gather but less precise. The objective of this article

is to compress a pre-trained DNN with an iterative hardware-

aware algorithm. Also, many articles work toward optimizing

the hyperparameters of DNNs and their organization. The

goal is to optimize the performance without loosing too much

precision. Most of these works aims for Neural Architectural

Search (NAS) to find the best DNN organization possible. For

instance, MAPLE [5] wants to predict hardware-aware latency

for a given organization. The authors used ML to easily adapt

to new hardware.

III. MODELING AND EVALUATION FLOW

To avoid starting from scratch, our framework will be based

on [1] with an update of the existing architecture to match

ours. The proposed flow is described in Fig. 2. First, a pre-

trained DNN model is partitioned into different clusters which

are then mapped on a multi-core CPU platform. Our proto-

type rely on a ZCU102 FPGA implementing the architecture

described in Fig. 1. Currently, the hardware design is made

up of seven Microblazes and different Xilinx IPs connected

through AXI buses. A Zynq processor is also used to control

access to the large-sized memory. On this real platform, timing

measurements are performed. The measurement infrastructure

is constituted of several IPs especially designed to capture

the number of clock cycles between two signals sent by the

processor. The information is then sent to a host PC through

an UART connection.

The evaluation flow takes three main inputs. The first one

is the hyperparameters of the DNN and the grain level at

which it is represented (”Partitioning” in Fig. 2). It is used

to build a model of the network following the rules of the

Synchronous Data Flow (SDF) model of computation. Then,

the timing measurements characterize an analytical model that

gives the elementary delays of communication, Tcomm and

computation, Tcomp. Finally, the specifications of the platform

are collected to build a model of the architecture. Everything

is then integrated into a SystemC code that can predict the

timing of a specific mapping on the prototyped platform. It’s

important to note that timing measurements are only required

once. Afterwards, the model is already calibrated and new

mappings can be evaluated without doing the characterization

again.

Evaluation

Timing
measurement

Timing
prediction

SystemC code

DNN model with
SDF

Src A B Snk

Platform
specifications

Real platform (FPGA)

Characterization
Tcomm = ?
Tcomp = ?

Platform model

Shared Memory

Large memory

CPU1 CPU2 ...

DMA

Partitioning

Fig. 2. Overview of the proposed modeling and evaluation flow for timing
prediction of DNN mappings.

IV. FUTURE WORK

The flow, in its current state is able to predict precisely the

timing of a DNN running on a multi-core CPU platform. The

next step is integrating the effect of the new memory hier-

archy in the evaluation software : characterizing the timings,

changing the SDF model and updating the SystemC code. Also

we would like to test this application with ResNet, a standard

State-of-the-Art CNN for embedded devices. It would require

to update the compilation workflow as the actual interface is

only capable of working with MLPs and is not compatible

with more complex mainstream frameworks such as PyTorch.

An other future goal of this work is to be able to perform

power consumption prediction. In the long term we would

also incorporate more heterogeneity in the architecture by

supporting hardware accelerators. Finally, in the future, it will

be interesting to integrate our evaluation model into a DSE

flow to find optimized mappings of the network.

REFERENCES

[1] Q. Dariol, Early Timing and Energy Prediction and Optimization of

Artificial Neural Networks on Multi-Core Platforms. PhD Thesis, Nantes
Université, Nov. 2023.

[2] E. Aghapour et al., “ARM-CO-UP: ARM COoperative Utilization of
Processors,” ACM Trans. Des. Autom. Electron. Syst., vol. 29, pp. 86:1–
86:30, Sept. 2024.

[3] H. Ahmad et al., “SuperSlash: A Unified Design Space Exploration
and Model Compression Methodology for Design of Deep Learning
Accelerators With Reduced Off-Chip Memory Access Volume,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 39, pp. 4191–4204, Nov. 2020.
[4] T.-J. Yang et al., “NetAdapt: Platform-Aware Neural Network Adap-

tation for Mobile Applications,” in Proceedings of the European con-

ference on computer vision (ECCV), pp. 285–300, arXiv, Sept. 2018.
arXiv:1804.03230 [cs].

[5] S. Abbasi et al., “MAPLE: Microprocessor A Priori for Latency Estima-
tion,” in Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pp. 2747–2756, arXiv, May 2022. arXiv:2111.15106
[cs].

Digital SRAM Modeling for Test
D. Ronga P. Girard A. Virazel

LIRMM – University of Montpellier / CNRS

Montpellier, France

dronga, girard, virazel@lirmm.fr

Abstract—Testing memory components is crucial to ensure

the reliability of electronic devices. As the demand for memory

performance and integration density continues to grow, the

extreme miniaturization of the technological node provides an

effective response to modern requirements. However, the

miniaturization process contributes to an increased multiplicity

of manufacturing defects, and an increasing complexity of

certain fault mechanisms in memories. The functional test

approach, which is widely used in memory testing, could show

limitations in the future given the increasing memory

complexity. To maintain a high level of quality in memory

components, a structural testing methodology, based on the

digital Cell-Aware test methodology, has been introduced. The

structural test method, which moves analog memories to the

digital domain from the test point of view, raises numerous

challenges due to paradigm shifts. This paper presents and

discusses critical points that have been studied and solved to

develop a digital SRAM memory model that allows a complete

implementation of the structural test methodology.

Keywords—Memory test, memory model, structural test.

I. CONTEXT AND MOTIVATIONS

To satisfy the performance needs of modern technologies
such as Artificial Intelligence (AI), computing power
requirements are constantly increasing in modern systems
such as System-on-Chip (SoC). Memories, which play a
central role in these systems, are required to cope with the
always increasing demand of performance and integration
density. The extreme miniaturization of the technological
nodes in memories provides an effective response to modern
requirements. However, as memory components shrink, they
become more susceptible to manufacturing defects, and the
complexity of certain fault mechanisms increase [1].

To guarantee the reliability of these computing systems,
the reliability of memory elements must be guaranteed.
Memory testing is generally based on a functional testing
approach. A common approach is to use test algorithms, often
March algorithms [2], due to their linear complexity, to target
Functional Fault Models (FFM) [3], which represents a
functional deviation from specifications. However, facing the
increasing complexity in memories, and to prevent and
overcome any potential limitations with functional testing,
new test approaches are investigated to improve test quality.

A structural test approach has been proposed in the field
of CMOS memory testing, and particularly for SRAM [4].
The structural test method is based on the digital Cell-Aware
test methodology [5][6] and considers the memory structure
to anticipate potential manufacturing deviations that can result
in memory defects. For each of these possible defects, their
detection conditions are established and listed in a structural
fault dictionary, which acts as a Structural Fault Model (SFM)
that is compatible with digital test tools.

The structural test approach for memories, which starts by
a located defect in the memory structure to establish its
detection conditions, also provides precise information on the
defect location for diagnosis purposes. This test method,

which relies on a digital test environment to operate, allows
the use of highly efficient digital test tools, such as Automatic
Test Pattern Generator (ATPG) or Fault Simulator (FS),
allowing optimized and defect-specific test pattern generation
or test algorithm evaluation.

However, to operate in a digital test environment, a
structurally detailed, and functionally accurate digital model
of memory is required. The digital model must be functionally
equivalent to its analog counterpart, and its structure must
allow an accurate SFM mapping to support the structural
testing approach in a digital test environment. This paper
presents the structural test flow, and discuss the main
challenges involved in the development of an effective digital
model of memory for structural testing.

II. DIGITAL MEMORY MODELING FOR TEST PURPOSE

To implement the structural test methodology, a digital
model of memory is required to provide an accurate structural
representation of the memory that is compliant with the digital
test environment. The model must allow a precise mapping of
SFMs to the memory and its sub-circuits, and its digital
simulation must be functionally equivalent to its analog
counterpart, allowing a trustworthy evaluation of complex test
sequences, such as March algorithms. The model must be able
to operate in a digital test environment, requiring an
equivalent and functional representation of a memorization
node.

Shifting from the analog to the digital domain to represent
a memory presents numerous challenges, since these domains
consider different conceptual assumptions. The digital domain
uses discrete time and value representation to operate, where
the analog domain expects a continuous definition of time and
values. The digital domain also expects some digital
primitives, such as n/p-MOS to drive an information from an
input to an output port, making it unidirectional primitives in
the digital domain [7], while they may operate bidirectionally
in the analog domain. Even if bidirectional equivalent
primitives are proposed in the digital domain, these
bidirectional primitives are not always compliant with digital
test environments.

To guarantee an equivalent data management with the
analog reference, the digital representation of the memory
must deal with its bidirectional nature [8] (e.g., an information
can be driven from/to a Bitcell through bidirectional SRAM
bitlines). To ensure the functional equivalence of the digital
model with its analog counterpart, its logic simulation must
represent the analog electrical states of a memory during
characteristic operations (e.g., Write or Read). Under an
equivalent set of memory operations, the digital model must
represent the final and stable states of the signal values that
are achieved by the analog simulation through its transient
electrical simulation.

In addition, specific design constructions are required to
allow the digital representation of a memorization node to
hold an information in a digital test environment, during the

test. These equivalent constructions are necessary to represent
the memorization effect of an analog memory in a digital test
environment (e.g., the complementary memorization nodes
driven by an inverter loop within an analog SRAM 6T Bitcell).

The digital SRAM model must be scalable to
accommodate different matrix sizes and different decoding
structures. Its memorization capability must allow the
consideration of the memory-array data-background in a
digital test environment, allowing the generation and the
evaluation of complex test sequences capable of targeting
SFM, owing to ATPG and FS.

III. IMPROVING MEMORY TEST QUALITY

The flow of the structural test methodology for memories
is depicted in Fig. 1. This flow illustrates the main steps in the
analog (yellow) and the digital (blue) domains, to implement
the structural memory test methodology. The analog domain
allows the memory description (<Analog netlist=) to be
electrically simulated (<Analog simulation=), providing a
functional reference for the development of a digital
equivalent model. It also allows the layout analysis of the
memory structure (<Layout analysis=), which can guide the
development of realistic defective models of the memory and
its sub-circuits, that can be simulated (<Analog defective
simulation=) in order to develop Structural Fault Models
(<SFM=). The digital domain allows the representation of a
digital model of memory (<Digital netlist=) to be simulated
(<Digital simulation=) and compared to the analog reference
to guarantee its functional equivalence. The elaborated SFMs
(<Fault list=) can be mapped to the digital model of the
memory, to automatically generate optimized test patterns
(<ATPG=), targeting the SFMs as fault list. These same files
can also be provided to a digital Fault Simulator (<FS=) to
evaluate the capability of test patterns or test algorithms that
are translated into patterns (<Pattern file=) in covering SFMs.

The memory model discussed in Section II has been
developed using a Verilog hierarchical design approach. Its
digital simulation demonstrates its functional equivalence
with its analog counterpart, and its structure allows SFMs to
be mapped for testing. A 4x4 SRAM case study model has
been developed to evaluate the capability of March algorithms
to cover a list of SFMs. To demonstrate the implementation of
the structural test methodology, SFMs available in the SRAM
literature [9][10] have been used as fault list. These SFMs are
established from the analysis of transistor-level defects in
SRAM sub-circuits (e.g., Bitcell, Write Driver, Sense

Amplifier, Row and Column Decoders). The fault simulation
results have led to comparative tables, demonstrating
individual March algorithms capability to cover structural
faults in SRAM.

To further improve the quality of memory test, new SFMs
can be developed, and the methodology could be combined
with Design-for-Test (DfT) approaches to further improve the
memory test quality.

ACKNOWLEDGEMENT

This work has been funded by the French National Re-
search Agency (ANR) under the framework of the ANR-22-
CE24-0014 QUALMEM (Quality Assurance of Advanced
and Emerging Memory Technologies by Using Machine
Learning) project.

REFERENCES

[1] A. Bosio, L. Dilillo, P. Girard, S. Paravossoudovitch, and A.
Virazel, <Advanced Test Methods for SRAMs,= ISBN 978-1-
4419-0938-1, Springer, 2009.

[2] A. J. Van de Goor, <Testing semiconductor memories: theory
and practice,= John Wiley & Sons, Inc., 1991.

[3] A. J. Van de Goor and Z. Al-Ars, <Functional memory faults:
a formal notation and a taxonomy,= VLSI Test Symposium, pp.
281–289, 2000.

[4] X. Xhafa, A. Ladhar, E. Faehn, L. Anghel, G. Di Pendina, P.
Girard and A. Virazel, <On Using Cell-Aware Methodology for
SRAM Bitcell Testing,= European Test Symp., pp. 1-4, 2023.

[5] F. Hapke et al., <Cell-aware Test,= IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
pp. 1396–1409, 2014.

[6] G. Mongelli, X. Xhafa, E. Faehn, D. Robins, P. Girard and A.
Virazel, <A Graph-Based Methodology for Speeding-up Cell-
Aware Model Generation,= International Symposium on On-
Line Testing and Robust System Design, pp. 1-6, 2024.

[7] <IEEE Standard for SystemVerilog – Unified Hardware
Design, Specification, and Verification Language,= IEEE Std
1800-2023 (Revision of IEEE Std 1800-2017), 2024.

[8] D. Ronga, X. Xhafa, E. Faehn, P. Girard, T. Vayssade, and A.
Virazel, <Producing a Bidirectional ATPG Compliant Verilog-
HDL Memory Model of SRAM,= Int. Conference on Design,
Test & Technology of Integrated Systems, pp. 1–6, 2024.

[9] X. Xhafa, E. Faehn, P. Girard, and A. Virazel, <SRAM
Periphery Testing Using the Cell-Aware Test Methodology,=
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2024.

[10] X. Xhafa, E. Faehn, P. Girard and A. Virazel, <A Structural
Testing Approach for SRAM Address Decoders using Cell-
Aware Methodology=, Int. Symp. on Defect and Fault
Tolerance in VLSI and Nanotechnology Syst., pp. 1-4, 2024.

Fig. 1. Structural test flow for memories, from the analog to the digital domain

Work in Progress: Securing a Critical Variable at
Compile Time

Clara BOURGEAIS, Laure GONNORD, David HÉLY
Grenoble INP, LCIS - UGA

Valence, France
{clara.bourgeais, laure.gonnord, david.hely}@lcis.grenoble-inp.fr

Abstract—This article puts forward the idea of a co-design,
between the hardware and the software of a computer system,
combining hardware security features with code generation. We
propose as a first contribution a countermeasure to a side channel
attack that reduces the amount of critical information passing
through vulnerable components, i.e. the bus and the cache. This
solution consists of minimizing the spill of a critical data by
integrating a pass, occurring between the instruction selection
and the register allocation of a compiler. The method will be
evaluated on RISC-V 32b processors.

Index Terms—Physical attacks, Secure code generation,
Hardware/Software co-design, RISC-V

I. INTRODUCTION

Hardware systems, on which software runs, are vulnerable
to physical attacks. Multiple hardware vulnerabilities are
regularly discovered, necessitating new countermeasures,
targeting only hardware or software level.

In order to secure end-to-end a whole system, we
need to co-design the hardware and the software so that:
1) hardware security properties are expressed at code
generation level; 2) available hardware countermeasures are
exploited; 3) software countermeasures correct remaining
hardware vulnerabilities. To address these issues, we will
express and ensure security properties in both the compiler
back-end and the hardware during its design. We plan to
develop code generation techniques through LLVM compiler
back-end passes to avoid hardware-specific vulnerabilities. We
also plan to formally validate co-design methodologies [1].
These objectives are part of a thesis started in October 2024,
sponsored by ARSENE, a PEPR Cybersécurité project [2].

This paper proposes a first contribution for this project.
We present a work-in-progress aimed at securing programs
by limiting the exposure of critical information on the cache
and bus during execution on a RISC-V architecture.

The paper is structured as follows: 1) Section II examines
the impact of register spilling on SCA, showing that its
avoidance enhances security; 2) Section III explains our use
of live ranges to prevent spilling; 3) Section IV proposes a
future method to validate our work;

II. IMPACT OF THE SPILL ON SIDE-CHANNEL ATTACKS

The “spill” is the compilation process of transferring a
variable from a register to memory in order to release the
register. This action enables the spilled register to hold a new
data. During compilation, if all the registers are occupied,

CPU
Register file Bus

Memory

Data leak
Cache

addi s0, zero, 10

sw s0, 0(sp) # Spill

addi s0, zero, zero

lw s0, 0(sp) # Reload

Figure 1. Illustration of a leaky register spill.

it becomes necessary to spill certain data (selected through
heuristics) so that all the instructions can be executed properly
at runtime. Spilling a variable involves moving its data through
the cache or the bus, potentially exposing it to vulnerabilities,
as depicted in Figure 1.

In fact, previous work has shown that both the bus and
cache are vulnerable to Side-Channel Attacks (SCA) [3], [4],
which are passive and non-invasive, enabling the retrieval
of information (in our case, sensitive data such that -parts
of- cryptographic keys), by observing auxiliary channels, like
timing analysis or power consumption measurements. Such
attacks can be done at relatively low-cost, with physical access
to standard microcontrollers.

In this study, we thus consider that attackers can access
any data passing through the bus and cache. In such cases,
it is important to protect these sensitive data, or at least
minimize their transactions between registers and memory. We
then propose to modify the compiler spilling phase to prevent
critical data for spilling.

III. USING LIVE-RANGES TO ELIMINATE LEAKY SPILLING

A. Observations

LLVM handles three main compilation stages: the
front-end (which converts source code to intermediate
representation), the middle-end (which optimizes the
Intermediate Representation (IR)), and the back-end
(which generates machine code). The LLVM back-end
has two important passes which interests us the most [5]:
1) instruction selection, which maps IR instructions into target
architecture instructions; 2) register allocation, which maps
virtual registers to hardware specific physical registers, where
spilling can occur if no register is available. The register

clara.bourgeais@lcis.grenoble-inp.fr
laure.gonnord@lcis.grenoble-inp.fr
david.hely@lcis.grenoble-inp.fr

a1 = 10

Register 1 Register 2

b3 = 6

(1)
(2)
(3)
(4)
(5)
(6)

c1 = a1 + 9 (19)
b2 = b1 + a1 (21)

(1) int a1 = 10; //key
(2) int b1 = a1 + 1;
(3) int c1 = a1 + 9;
(4) b2 = b1 + a1;
(5) a2 = c1;
(6) b3 = 6;

a2 = c1 (19)

b1 = a1 + 1 (11)

Live-ranges
a1

b1
c1

b2
a2

b3

Live-range of a variable Part of the live-range to spill

Figure 2. Illustration of live-ranges applying on a C code and impact on the
register pressure.

allocator is based on early passes, particularly live-ranges
analysis. A live-range represents the set of operations during
which a variable remains available in a register, helping
to determine the register pressure. Figure 2 illustrates how
live-range analysis allows the compiler to identify cases
where the number of available registers is not sufficient.
For the sake of readability, the source code is still depicted
in C-like syntax. It has been transformed into Single Static
Assignment form [5], in which each variable is written only
once, in order to ease the computation of the live ranges,
depicted at the bottom left of the Figure. After line 3, a1,
b1, c1 are simultaneouslylive, requiring one to be spilled to
memory. In this case a1 is stored into memory (which is
depicted by a brown rectangle).

However, a1 being critical (as it contains a critical data), we
should avoid as much as possible to prevent it for not being
spilled, for all its live range.

B. Contribution

We have consequently implemented a compiler pass in the
production LLVM pipeline, executed before register allocation.
Since each register in an instruction is linked to a live-
range, the pass iterates over IR instructions and marks selected
live ranges as non-spillable using the markNotSpillable()

function from the live-range object.
In addition, we must selectively decide which live-ranges to

mark as critical. The difficulty here is that we only have this
information at the source level; potentially marked as critical
by the programmer, and tracing such an information from the
source code to the register allocator would be a contribution
per itself. Such a tracer is for the moment also work-in-
progress [6]. We thus decide to use a “known-folklore” trick.

In this work, we use inline assembly volatile instructions,
added after the declaration of a critical variable, in the C
source code as shown in Listing 1. The asm volatile keyword
prevents the compiler from optimizing away [7] the key

variable. It therefore includes a command line that cannot

be optimized away. The option "r"(key) indicates that our
key will we stored in a register that we can retrieve.

uint64_t key = 0x2b7e151628aed2a6;

asm volatile ("# key %0":: "r"(key));

Listing 1. Illustration of an inline volatile assembly instruction in C.

IV. LIMITS AND EVALUATION

A non-spillable critical variable is protected, but if it
depends on a spillable non-critical one, an attacker who knows
the value of the latter at instruction time can infer the critical
value. Therefore, all variables that influence a critical one must
also be protected. Our approach should thus be combined with
a technique similar to tainted flow analysis [8].

Moreover, if all variables stored in registers has to be spilled
but are all critical, spilling couldn’t occur anywhere else and
compilation will remain impossible. We try to address this
problem, by minimizing the total number of spill of these
variables, i.e. modifying the register allocator strategy.

To check that our critical variables are not spilled and to
assess the impact on the executable, we need to measure the
number of spills in the assembly code and in our critical
variable. A pass enabling this is under development. The aim
is to be able to compare the spill rate without and with our
countermeasure, and measure the impact on execution time.

We also intend to experimentally evaluate the SCA
robustness of our solution on a 32-bit RISC-V microcontroller.

V. CONCLUSION

In this article, we present a method for protecting a critical
variable from SCA. This method consists in preventing the
spill of the variable, and is part of a wider ambition to take into
account hardware specificities and existing countermeasures in
a hardware system.

In the future, we would like to enhance our contribution
with other data-flow analyses.

We also plan to track hardware specificities more precisely
by integrating hardware/software contracts at the code
generation level, in order to formally prove that a system is
robust against fault attacks and SCA.

REFERENCES

[1] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila, “Hardware-Software
Contracts for Secure Speculation,” in 2021 IEEE Symposium on Security

and Privacy (SP), pp. 1868–1883, May 2021.
[2] “PEPR Cyber ARSENE.” https://www.pepr-cyber-arsene.fr/.
[3] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li, “An

Overview of Hardware Security and Trust: Threats, Countermeasures,
and Design Tools,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 40, pp. 1010–1038, June 2021.
[4] E. B. Talaki, O. Savry, M. Bouvier Des Noes, and D. Hely, “A Memory

Hierarchy Protected against Side-Channel Attacks,” Cryptography, vol. 6,
p. 19, June 2022.

[5] K. D. Cooper and L. Torczon, Engineering a Compiler. Morgan
Kaufmann, Aug. 2022.

[6] S. Michelland, “tracing-LLVM · GitLab.” https://gricad-gitlab.univ-
grenoble-alpes.fr/tracing-llvm/llvm, Apr. 2025.

[7] gcc.gnu.org, “Extended Asm - Using the GNU Compiler Collection
(GCC).” https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Extended-
Asm.html.

[8] D. E. Denning, “A lattice model of secure information flow,” Commun.

ACM, vol. 19, pp. 236–243, May 1976.

TrustMe: A high-level cycle accurate power

estimator for secure embedded processors

Mustapha Khairan Ghliss∗, Yehya Nasser†, Guy Gogniat∗, Salam Doumiati‡

∗ Lab-STICC, UMR CNRS 6285, Universite Bretagne Sud, Lorient, France
† IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France

‡ L@bISEN, Usine du Futur, ISEN Yncréa Ouest, Brest, France

Email: mustapha.ghliss@univ-ubs.fr

Abstract—In modern digital systems, securing sensitive in-
formation goes beyond software defenses. Side-channel attacks
(SCAs) exploit unintended physical emissions—such as power
consumption variations—to extract secret information like en-
cryption keys, posing a serious risk to the security of embedded
systems. This vulnerability is particularly concerning in IoT
networks, satellite communications, and encrypted radio sys-
tems, where data confidentiality is crucial. Traditional security
measures often overlook physical-layer threats, leaving systems
exposed to potential breaches. To address this gap, the TrustMe
project introduces an intelligent power estimator designed to
detect and mitigate cryptographic leaks at design time, enhancing
security at the hardware level before attackers can exploit these
weaknesses.

Index Terms—Power estimation, Processor security, Artificial
intelligence and Cycle accurate precision.

I. INTRODUCTION

As embedded systems become increasingly prevalent in ap-

plications with stringent security requirements, ensuring their

resilience against security vulnerabilities is critical. Among

these threats, power side-channel attacks (SCAs) pose a partic-

ularly serious concern like mentioned in [1]. As many research

works pointed out, software style impacts program perfor-

mance, power and energy consumption of computing devices

in significant ways [2]. Furthermore, software implementa-

tions, if not handle with care, also have a significant impact

regarding security. This challenge underscores the need for

power-aware security evaluations early in the design process.

However, existing approaches often rely on computationally

intensive simulations or physical prototypes, making them

impractical for early-stage analysis.

We introduce TrustMe, a high-level, cycle-accurate power

estimation framework for secure embedded processors.

TrustMe provides early-stage power analysis by estimating

the power consumption based on instruction execution and

microarchitectural behavior, balancing accuracy and efficiency.

This work targets a fine level of granularity, few prior studies

have addressed power estimation at the cycle-accurate level as

discussed in Section II. Such a fine level of granularity allows

designers to assess power leakage risks and evaluate counter-

measures before a physical implementation. Our methodology

The authors would like to thank the Direction Générale de l’Armement
(DGA) and the CMA CyberSkills4All initiative for their sponsorship and
support. Their contributions have been instrumental in the development of
this research.

involves instruction-level power characterization with cycle-

accurate precision, modeling microarchitectural contributions,

and integrating these elements into a simulation framework to

generate per-cycle power estimates. The goal is to provide a

clear, developer-friendly tool that aids in identifying vulnerable

locations within software. The following sections present the

state of the art and detail the methodology employed in

TrustMe.

II. RELATED WORKS

Previous research in power estimation and side-channel vul-

nerability assessment has approached the problem from several

valuable, yet ultimately limited, perspectives. At one end of the

spectrum, Breier et al. [3] conducted a comprehensive RISC

CPU analysis using cycle-accurate measurements at the gate

level. While highly precise, this approach operates at a low

level of abstraction, making it both costly and less acces-

sible for early-stage design intervention. In contrast, Zhang

et al. [4] introduced a ChipWhisperer-based methodology

that demonstrated gold-standard accuracy in detecting power

leaks through physical measurements. This work inspired our

hardware setup for TrustMe, although such physical analyses

can only identify vulnerabilities post-silicon, limiting their

utility in pre-silicon design phases.

On the other end of the spectrum, machine learning-based

approaches such as the FPGA/ASIC estimator in [5] and the

microarchitecture-level model in [6] offer high-level abstrac-

tions and rapid analysis capabilities. However, these methods

suffer from critical drawbacks; they tend to focus on average

power consumption, overlooking the instantaneous leakage

patterns that are crucial for side-channel analysis.

Architectural simulators such as the instruction-level RISC-

V model from [7] and the ARCHER framework [8] represent

significant progress in pre-silicon analysis. Yet, these models

rely on fixed mathematical abstractions, which limits their

scalability and adaptability. Similarly, DeepPM [9] introduces

a novel transformer-based model, but operates at a high level

of abstraction, estimating only the average power of a program

without preserving cycle-level granularity.

TrustMe synthesizes the strengths of these diverse ap-

proaches while addressing their limitations. We preserve the

cycle-accurate precision of physical measurement techniques

while shifting the analysis to the critical pre-silicon phase.

Our framework avoids the opacity of pure machine learning

solutions through interpretable, physically-grounded power

modeling. Furthermore, it is purpose-built for security analysis

which enables designers to efficiently identify and mitigate

power side-channel vulnerabilities earlier in the design process

thanks to a real-world leakage behavior.

III. METHODOLOGY

The TrustMe simulator will enable developers and re-

searchers to visualize how code-level behavior translates into

power consumption, ultimately helping identify potential secu-

rity vulnerabilities such as side-channel leakage. An illustra-

tive example of how TrustMe is applied is shown in Figure 1.

Fig. 1. TrustMe use case

TrustMe follows a structured and modular methodology to

achieve precise and scalable power estimation. The core steps

of our approach are as follows:

• Dynamic Instruction Execution – We introduce ran-

domized execution parameters to evaluate a wide range of

instruction sequences. This ensures that our analysis cap-

tures a wide spectrum of power consumption behaviors,

accounting for instruction-level diversity.

• Power Trace Collection – We interface with a RISC-

V-based hardware platform to capture real-time power

traces during execution (Figure 2). These fine-grained

measurements reveal subtle power fluctuations associated

with specific instructions and data patterns.

• Dataset Generation and Power Modeling – The col-

lected traces are processed to create a rich dataset that

aids in training models capable of understanding complex

correlations between instruction execution and power

signatures. Leveraging this dataset, the model undergoes

a dedicated modeling phase, during which it acquires

pattern knowledge by learning from power consumption

behavior.

• Smart Model Optimization – Our machine learning

pipeline will include iterative refinement to improve the

precision and generalization of the power model. This

ensures that the system can effectively identify anomalies

or potentially vulnerable instruction sequences.

The TrustMe project leverages a combination of hardware

instrumentation and AI techniques, as depicted in Figure 2.

This integration allows developers to not only estimate power

consumption at a fine-grained level, but also to interpret results

in a human-readable manner, enabling effective vulnerability

localization and software hardening.

C code

Chipwhisperer
Setup

Control board
CWlite

Power Trace

Victim Board

Daughter
Board

Mother
Board

+

Fig. 2. Hardware setup

IV. CONCLUSION

We introduced TrustMe, a power estimation framework

that combines real measurements with AI-based prediction

techniques to provide cycle-accurate power estimations. By

enabling detailed detection of power leakage vulnerabilities,

TrustMe contributes to securing embedded processors against

side-channel attacks.

REFERENCES

[1] Mark Randolph and William Diehl, “Power Side-Channel Attack Anal-
ysis: A Review of 20 Years of Study for the Layman,” Cryptography,
vol. 4, p. 15, May 2020.

[2] Wellisson G. P. da Silva, Lisane Brisolara, Ulisses B. Corrêa, and Luigi
Carro, “Evaluation of the impact of code refactoring on embedded
software efficiency,” in Proceedings of the 1st Workshop de Sistemas

Embarcados, pp. 145–150, 2010.
[3] J. Breier, D. Jap, C. Chen, and L. Kriege, “A Comprehensive Side-

Channel Leakage Analysis of an In-Order RISC CPU Microarchitec-
ture,” IEEE Transactions on Computers, vol. 70, no. 8, pp. 1187–1200,
Aug. 2021.

[4] C. Zhang, J. Yang, and W. Zhang, “Cycle-Accurate Power Side-Channel
Analysis Using the ChipWhisperer: A Case Study on Gaussian Sam-
pling,” in Proc. IEEE Symposium on Security and Privacy (S&P), 2022,
pp. 1987–2004.

[5] Y. Wang, Q. Liu, J. Wang, and L. Cheng, “An Efficient Computer-Aided
Design Methodology for FPGA/ASIC High-Level Power Estimation
Based on Machine Learning,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 30, no. 5, pp. 601–614, May 2022.
[6] H. Li, K. O’Brien, and A. Rahimi, “Machine Learning-Based

Microarchitecture-Level Power Modeling of CPUs,” in Proc. IEEE Inter-

national Symposium on Performance Analysis of Systems and Software

(ISPASS), 2020, pp. 84–95.
[7] T. Suzuki, M. Nagata, and A. Schaumont, “Instruction-Level Power

Consumption Simulator for Modeling Simple Timing and Power Side
Channels in a 32-bit RISC-V Micro-Processor,” in Proc. IEEE Asia

Pacific Conference on Circuits and Systems (APCCAS), 2019, pp. 183–
186.

[8] M. Yan, J. Xu, and Q. Xu, “ARCHER: Architecture-Level Simulator
for Side-Channel Analysis in RISC-V Processors,” in Proc. IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2021,
pp. 1–9.

[9] K. Tang, Y. Liu, and P. Huang, “DeepPM: Transformer-based Power and
Performance Prediction for Energy-Aware Software,” IEEE Transactions

on Sustainable Computing, vol. 7, no. 3, pp. 567–580, July-Sept. 2022.

Multi-mode Network-on-Chip for AI dataflow

accelerators

Mohamed Amine Zhiri∗‡, Hana Krichene∗, Chiara Sandionigi†, Sébastien Pillement‡

∗Université Paris-Saclay, CEA, LIST, 91120 Palaiseau, France

{mohamed-amine.zhiri,hana.krichene}@cea.fr
†Université Grenoble Alpes, CEA, LIST, 38000 Grenoble, France

chiara.sandionigi@cea.fr
‡Nantes Université, CNRS, IETR, UMR 6164, 44000 Nantes, France

{mohamed-amine.zhiri,sebastien.pillement}@univ-nantes.fr

Abstract—Fully Connected (FC) layers are a bottleneck for
many Deep Neural Networks (DNN) algorithms due to their
high bandwidth requirements, which makes their hardware
acceleration particularly challenging. In this paper, we propose
HT-NoC (High Throughput Network-on-Chip), a multi-mode
NoC to accelerate FC layers. Compared to a baseline mesh, HT-
NoC achieves a 4× reduction in latency and a 2.7× decrease
in energy consumption in the propagation of FC layer weight
parameters. When integrated into an AI dataflow accelerator,
HT-NoC achieves a 3× speedup in executing Feed Forward
Network (FFN) blocks in Transformers, outperforming state-of-
the-art (SoA) systolic array (SA) based accelerators.

Index Terms—Network-on-Chip, AI accelerators.

I. INTRODUCTION

DNNs have recently shown enormous potential, with ar-

chitectures such as convolutional neural networks and trans-

formers leading the way in fields like computer vision and

natural language processing. A common layer among those

two architectures is the FC layer. FC layers are bandwidth

bound, hence efficient communication is critical for their

acceleration. In this work, we propose HT-NoC, a multi-mode

NoC that dynamically adjusts its throughput to match the

bandwidth needs of FC layers. To achieve this, HT-NoC uses a

reconfiguration mechanism that involves rerouting router ports

to fully utilize unused NoC resources thereby taking advantage

of available unused bandwidth. HT-NoC shows promising

results for some Convolutional (CONV) layers also.

II. RELATED WORK

Two different strategies can be used to increase bandwidth

and reduce latency in NoCs and routers namely : resource

duplication and resource usage. Resource duplication solu-

tions such as widening links [1] or multiple routers [2]

can increase overall performance but incur higher area and

power overheads. These overheads can be overcome using

resource reuse strategies [3] [4]. However, the performance

gains from reuse can be limited if only certain components are

optimized—for instance, improving buffers without addressing

channel inefficiencies, or vice versa, may constrain the overall

benefits. Therefore, for optimal results, it is necessary to

reuse all available NoC resources. Our strategy in HT-NoC

revolves around adding limited amount of logic to fully reuse

all available router resources.

III. ARCHITECTURE AND DATA PROPAGATION

HT-NoC features a 2D-mesh topology and utilizes the XY

routing algorithm alongside wormhole flow control, with a

channel width of 32 bits. Each router can operate in one of two

distinct modes that are Normal Mode and HT mode. The Nor-

mal Mode serves as the default mode in which each router is

directly connected to its four neighboring routers. In this mode,

the router’s available output bandwidth is evenly distributed

across all its output ports. The HT Mode is designed for high-

bandwidth traffic patterns that maintain a consistent direction.

A prime example of this is the propagation of weights in FC

layers. To fully utilize the available bandwidth of each router,

unused output ports are reconfigured to transmit data in the

same direction (west to east for our usecase). As illustrated in

Fig. 1, HT blocks are switches that enable each router to switch

from one operating mode to another. Black arrows demonstrate

normal mode connections while blue arrows are used in HT

mode. Red arrows are used in both modes.

N_HT

S_HT

R

W
_
H

T

E
_
H

T

To local PE

N_HT

S_HT

RN

W
_
H

T

E
_
H

T

N_HT

S_HT

RS

W
_
H

T

E
_
H

T

N_HT

S_HT

RW

W
_
H

T

E
_
H

T

N_HT

S_HT

RE

W
_
H

T

E
_
H

T

Fig. 1: Router connections

The execution of FC and CONV follows 4 different phases:

filter propagation, input feature map (ifmap) propagation,

computation, and output feature map (ofmap) collection. Filter

propagation in FC layers and ifmap propagation in CONV

layers are performed in HT mode to take profit from available

bandwidth. Other phases are performed in the normal mode.

IV. EXPERIMENTAL RESULTS

A. Area

We present the FPGA synthesis results for a 12x12 HT-NoC

configuration operating at 100 MHz targeting the AMD Versal

FC latency in clock cycles FC dynamic energy in (µJ) CONV latency in clock cycles CONV dynamic energy in (µJ)

Fig. 2: Propagation of FC and CONV layers input parameters latency and dynamic energy consumption

XCVC1902 device in Tab. I. The results show that HT-NoC

increased LUT usage by 17% and Flip Flops by 4% compared

to the baseline NoC.

TABLE I: Hardware resource utilization

Baseline
router

HT router Baseline
NoC (12x12)

HT NoC
(12x12)

CLB LUTs 2064 2137 290810 339549

Flip Flops 1142 1146 158620 164996

B. Input data propagation

Fig. 2 illustrates input data propagation time and energy

consumption for benchmarked FC and CONV layers. Re-

garding latency, HT-NoC speeds up data propagation by a

factor of four for all layers, compared to the baseline NoC.

Energy-wise, HT-NoC achieves an average reduction of 2.7×

for each FC layer. For all CONV layers, filter propagation

has the same latency in both NoCs, since HT-NoC does not

accelerate the filter data sending. For ifmaps, HT-NoC achieves

a 2.35× acceleration and an average energy saving factor

of 2 compared to the baseline NoC. Unlike FC layers, the

performance of HT-NoC for CONV layers depends widely on

the layer. Better performance are obtained in early layers. In

fact, in deep layers, filters are larger than ifmaps.

C. Integration into an AI accelerator

We integrate HT-NoC into AI dataflow accelerator used in

[5] to study the execution time of ViT-Base [6] and the original

Transformer [7] models on the accelerator with both the

baseline NoC and HT-NoC. Then we compare with the perfor-

mance of Me-ViT [8] and the Transformer accelerator [9] that

are both SA based architectures. Fig. 3 shows that compared

to the baseline NoC, HT-NoC induced an acceleration of the

weight propagation phase by a 4× factor. Finally, HT-NoC

delivers a speedup of 2.7× and 3× compared to the 32× 32

baseline accelerator and Me-ViT, respectively, when executing

the FFN block of the ViT-Base model. Furthermore, the FFN

block of the original Transformer model was accelerated by

of 3.1× and 2.8× over the 64 × 64 baseline accelerator and

the Transformer accelerator.

V. CONCLUSION

In this paper, we presented HT-NoC, a reconfigurable NoC

that adjusts its throughput to accelerate the execution of FC

layers. HT-NoC achieves a 4× speedup and a 2.7× reduction

(a) ViT-Base in 32x32 (b) Transformer in 64x64

Fig. 3: Execution time breakdown of FFN layers of Vit-Base,

transformer over different configurations of the accelerator

in energy consumption when transmitting weights of FC lay-

ers. It also achieves favorable results for some CONV layers.

Lastly, we integrated HT-NoC into an AI dataflow accelerator

and showed that HT-NoC can accelerate the execution time

of FNN blocks of transformers by a 3× factor, thus yielding

favorable results compared to SoA SA-based solutions.

REFERENCES

[1] T. Fischer, M. Rogenmoser, M. Cavalcante, F.K. Gürkaynak, and
L. Benini. Floonoc: A multi-tb/s wide noc for heterogeneous axi4 traffic.
IEEE Design Test, 40(6):7–17, 2023.

[2] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze. Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices. IEEE

Journal on Emerging and Selected Topics in Circuits and Systems,
9(2):292–308, 2019.

[3] Y.-C. Lan, S.-H. Lo, Y.-C. Lin, Y.-H. Hu, and S.-J. Chen. Binoc: A
bidirectional noc architecture with dynamic self-reconfigurable channel.
In 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip,
pages 266–275, 2009.

[4] H. Farrokhbakht, H. Kao, and N.E. Jerger. Ubernoc: unified buffer
power-efficient router for network-on-chip. In Proceedings of the 13th

IEEE/ACM International Symposium on Networks-on-Chip, NOCS ’19,
New York, NY, USA, 2019. Association for Computing Machinery.

[5] H. Krichene, R. Prasad, and A. Mouhagir. Ainoc: New interconnect for
future deep neural network accelerators. In Design and Architecture for

Signal and Image Processing - 16th International Workshop, DASIP 2023,

Toulouse, France, January 16-18, 2023, Proceedings, volume 13879 of
Lecture Notes in Computer Science, pages 55–69. Springer, 2023.

[6] A. Dosovitskiy et al. An image is worth 16x16 words: Transformers
for image recognition at scale. In 9th International Conference on

Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,

2021. OpenReview.net, 2021.
[7] A. Vaswani et al. Attention is all you need. In Advances in Neural

Information Processing Systems, volume 30, 2017.
[8] K. Marino, P. Zhang, and V.K. Prasanna. Me- vit: A single-load memory-

efficient fpga accelerator for vision transformers. In 2023 IEEE 30th

International Conference on High Performance Computing, Data, and

Analytics (HiPC), pages 213–223, 2023.
[9] S. Lu, M. Wang, S. Liang, J. Lin, and Z. Wang. Hardware accelerator for

multi-head attention and position-wise feed-forward in the transformer.
In 2020 IEEE 33rd International System-on-Chip Conference (SOCC),
pages 84–89, 2020.

Machine Learning Approaches for Application Mapping

Optimization in Network-on-Chip Architectures

Zainab GHRAYEB1,2, Sebastien LE NOURS2, Christophe MOY1, Jordane LORANDEL1, and Christine SINOQUET3

1 Univ Rennes, CNRS, IETR UMR 6164, F-35000, Rennes, France Email: zainab.ghrayeb@etudiant.univ-rennes.fr
2 Nantes Univ, CNRS, IETR UMR 6164, F-44000 Nantes, France

3 Nantes Univ, CNRS, LS2N UMR CNRS 6004, F-44000 Nantes, France

Abstract—Application mapping optimization is a critical chal-
lenge in Network-on-Chip (NoC) design, as heuristic methods
often struggle to find optimal solutions. Various new mapping
frameworks have been proposed, recently employing differ-
ent predictive machine learning models and search strategies.
However, a comparison of these approaches reveals a common
limitation: they often overlook interactions with the memory
hierarchy. To address this gap, we propose an adaptation of
existing frameworks to support more complex NoC architectures,
taking memory interactions into account for studying the effect
on performance and scalability.

Index Terms—application mapping, network-on-chip (NoC),
predictive model, search approach.

I. INTRODUCTION

Currently, network-on-chip (NoC) represents the main so-

lution for efficient communication infrastructure in multi-

processor systems. NoCs provide high-performance, scalable,

efficient, and high-bandwidth communication between cores,

overcoming the limitations of traditional bus-based intercon-

nects. NoC systems differ from each other depending on

topology (e.g., 2D mesh, torus, 3D mesh), routing algorithms,

latency, throughput, power consumption, and scalability. De-

signing NoCs is particularly complex due to the large number

of interdependent parameters (like buffer size, number of vir-

tual channels, or routing method). Each design choice affects

multiple performance and energy metrics, often in conflicting

ways.

In addition to these architecture challenges, the application

mapping adds another layer of complexity. Application map-

ping involves assigning application software tasks to process-

ing elements connected through the NoC. The objective is to

minimize the communication latency and energy consumption

by balancing computation and communication load distribu-

tion. Poor mapping can negate the benefits of a well-designed

architecture, making efficient mapping strategies critical for

overall system performance.

Some existing traditional mapping algorithms rely on ex-

haustive search methods, but they suffer from reaching optima

This work is supported by France 2030 Priority research program and
equipment for artificial intelligence PEPR IA-Projet AdaptING, under the ref
ANR-23-PEIA-0009.

in a prohibitive search duration. Machine learning (ML) tech-

niques have been introduced for their ability to favor mapping

decisions and reduce exploration time. These algorithms have

the ability to extract different relations between tasks of an

application, guide the search for the optimal solution, and

handle large-scale mapping. From this scope, in our work,

we plan to adopt machine learning algorithms to favor the

static mapping optimization problem for some specific NoC

architectures.

II. RELATED WORK

Over the years, various algorithms have been proposed for

the static mapping problem of dataflow oriented applications.

Static mapping methods include exact techniques like mathe-

matical programming or search-based mapping. Mixed-integer

linear programming (MILP) has been used with clustering to

reduce complexity, though this often compromises solution

quality [1]. Since most previous methods target small IP-core

systems, heuristic search has become the preferred approach

for large-scale mappings. Heuristic methods are generally

classified into transformative and constructive heuristics.

Transformative heuristics use evolutionary algorithms to

explore the solution space, but they rely on stochastic pro-

cesses that may suffer from poor scalability [2]. Constructive

heuristics build mappings step by step, either incrementally

without improvement or with an iterative refinement phase.

However, if the initial construction criteria are not well-

designed, the final mapping may be suboptimal [2].

In recent years, ML have been increasingly applied to

solve mapping optimization problems as illustrated in Fig.

1. As illustrated, ML-based predictive models typically take

two inputs: an application graph, representing tasks and their

communication, and the Network-on-Chip (NoC) architec-

ture, consisting of a defined number of processing elements

(PEs). Table I highlights some articles that propose ML-

based predictive models. These models iteratively compute

the probability of each candidate mapping until the specified

number of mappings is reached. From the obtained mapping

solutions, different search approaches are applied to explore

the mappings further. For every solution, the communication

cost is computed, and the mapping with the lowest cost is

ultimately selected as the final mapping decision for the given

ML-based
Predictive

model

Search
approach

Mapping with lowest
communication cost

r1 r2

r3 r4
t1 t4

t3

?

No

Yes ?

No

Yes

m mapping solutions

r1 r2

r3 r4

solution i

 t1

 t3

 t2p(i)

 t4

Meets
designer objective

t1

t4

t3
t2

20
60

30
20

5030

Application Graph

r1 r2

r3 r4

NoC Structure

r1 r2

r3 r4

t2t3

t1t4

r1 r2

r3 r4

t2t3

t1t4

r1 r2

r3 r4

 t3 t2

 t1 t4p(i)
t2Reach the specified

number of mappings

Fig. 1. General illustration of the mapping process. This flow aims to illustrate existing work for the application mapping problem. Refer to Tab. I for detailed
information for each step.

application and platform. These mapping processes differ

depending on the predictive model and the convergence speed

of the search method.

Chen et al in [1] proposed the MPNN-Pointer Network

(MPNN-PtrNet), a two-phase ML-based predictive model de-

signed for application mapping. In the first phase the appli-

cation graph is processed using a Message Passing Neural

Network (MPNN) to extract high-level structural features. In

the second phase, an attention mechanism is employed to

select elements from the input sequence as outputs, effectively

generating the mapping solution. This proposed predictive

model was used in other papers [2], [3] but differ in the

search approach performed. Sambangi et al in [4] propose an-

other predictive model composed of Graph Attention Network

(GAT) that uses an attention mechanism to weight the contri-

butions of neighboring nodes followed by a Ptr network, to

extract more features from the graph application that improve

the mapping solutions especially if working with 3D NoC

instead of 2D NoC. Optimizing communication cost for a 2D

NoC, the reinforcement learning-based method proposed in [2]

demonstrates a noticeable reduction in communication energy

compared to the supervised learning approach in [1] and

traditional heuristic search methods. Also this method shows

a reduction in the CPU execution time compared to traditional

methods. Furthermore, replacing the search mechanisms used

in [2] with the active search strategy proposed in [3] leads to an

even greater reduction in communication cost, highlighting the

effectiveness of adaptive and reward-guided exploration. While

these three algorithms focus on 2D NoC architectures, the

method presented in [4] extends the application to a 3D NoC,

achieving additional improvements in both communication

cost and energy efficiency by incorporating Through-silicon

Via (TSV) placement and congestion-aware mapping.

Despite their promising results, the proposed ML-based

mapping methods have several limitations. Reinforcement

learning approaches often involve high computational over-

head during training. Early models primarily optimize the

communication cost of mapping the tasks to the processing

elements without accounting the communication between the

processing elements and the memory hierarchy. Scalability

remains a concern, especially for large application graphs,

and some models require retraining to adapt to different NoC

topologies. These challenges highlight the need for more

efficient and generalizable solutions.

TABLE I
RECENT ML-BASED APPLICATION MAPPING APPROACHES FOR NOC.

Paper
ML-based

Predictive Model
Search

Approach
Training

[1] MPNN-Ptr
Global search followed

by 2-opt local search
Supervised

learning

[2] MPNN-Ptr Genetic algorithm RL

[2] MPNN-Ptr Particle swarm optimization RL

[3] MPNN-Ptr Active search RL

[4] GAT-Ptr Updating reward of RL RL

III. PROPOSAL

Based on the limitations of the proposed method, one

promising direction involves extending the presented frame-

work in Fig. 1, addressing the interaction with the memory

hierarchy. Applications such as artificial intelligence often

involve a large number of parameters that exceed the capacity

of the private memory available in individual processing ele-

ments. To overcome this limitation, sharing resources between

tiles and leveraging memory hierarchy can offer an effective

solution. Consequently, extending the platform architecture

emerges as a compelling strategy to enhance and adapt existing

algorithms to meet these demands.

IV. CONCLUSION

In this paper, we have presented the adoption of ML-

based approaches for application mapping optimization in

NoC architectures. Our aim is to extend the considered related

works to consider more the influence of large size memory

accesses in the mapping process.

REFERENCES

[1] Chen, Qingkun, Wenjin Huang, Yuanshan Zhang, and Yihua Huang.
”An IP core mapping algorithm based on neural networks.” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 29, no. 1
(2020): 189-202.

[2] Chen, Q., Huang, W., Peng, Y. and Huang, Y., 2021. A reinforcement
learning-based framework for solving the IP mapping problem. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 29(9),
pp.1638-1651.

[3] Sambangi, Ramesh, Arun Sammit Pandey, Kanchan Manna, Sudipta
Mahapatra, and Santanu Chattopadhyay. ”Application mapping onto
manycore processor architectures using active search framework.” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 31, no. 6
(2023): 789-801.

[4] Ramesh, Sambangi, Kanchan Manna, Vinay Chakravarthi Gogineni,
Santanu Chattopadhyay, and Sudipta Mahapatra. ”Congestion-aware
vertical link placement and application mapping onto three-dimensional
network-on-chip architectures.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2024).

Adaptative and optimized AI for the IoT Edge

Cloud Continuum

1st Léo BERNARD

Université Côte d’Azur, CNRS, LEAT

Sophia Antipolis, France

leo.bernard@univ-cotedazur.fr

2nd Alain Pegatoquet

Université Côte d’Azur, CNRS, LEAT

Sophia Antipolis, France

alain.pegatoquet@univ-cotedazur.fr

3rd Laurent Rodriguez

Université Côte d’Azur, CNRS, LEAT

Sophia Antipolis, France

laurent.rodriguez@univ-cotedazur.fr

Abstract—The increasing deployment of low-power IoT sensors
has driven the need for more efficient data processing paradigms
that go beyond the traditional cloud-centric model. The IoT-
Edge-Cloud Continuum (IECC) emerges as a promising archi-
tecture, unifying the strengths of IoT devices, edge nodes, and
cloud servers to enable real-time, energy-efficient applications.
However, the heterogeneity, dynamic nature, and multi-objective
optimization challenges inherent in this continuum complicate
the deployment of AI models. This PhD research focuses on the
development of adaptive and energy-efficient AI models tailored
for the IECC. Key contributions include automatic scaling of AI
architectures, optimization of distributed AI systems and latency
constraints, and validation of the created method through real
world experiments.

Index Terms—Iot, Edge, Cloud, AI, Energy efficiency.

I. INTRODUCTION

Low-power IoT sensors have seen significant development

over the past several years. Their versatility allows them to

be employed in numerous scenarios where mains-powered

sensors are not usable. However, this comes at the cost of

limited computational capabilities. Traditionally, the cloud has

been used to address this limitation. This approach has enabled

the development of numerous applications and remains widely

adopted today. However, relying on the cloud introduces

substantial latency while increasing communication cost and

compromising data privacy. In response to these limitations,

edge computing was introduced as an intermediate layer

offering greater computational power than IoT nodes while

being closer to sensors than Cloud servers.

The IoT-Edge-Cloud Continuum (IECC) aims to leverage

these layers and create applications able to take full advan-

tage of their respective strengths. This continuum represent

an efficient solution for use cases such as health wearable,

Augmented/Virtual Reality (AR/VR) or smart cities. These

applications indeed need fast response time combined with ex-

cellent performance and reduced energy consumption. There-

fore, understanding and optimizing the use of the IECC will

be crucial in the future for these cutting edge applications.

While there are undeniable advantages, the development of

this continuum has faced many challenge:

This work has been supported by the French government, through the
France 2030 investment plan managed by the Agence Nationale de la
Recherche, as part of the ”UCA DS4H” project, reference ANR-17-EURE-
0004

• Heterogeneity : The devices characteristics and con-

straints, as well as their number, are different in the

continuum, which makes it nearly impossible to find

optimal solutions to optimization problems.

• Dynamic environment : While the topology of the contin-

uum is known, its state at a given time can be impacted

by a multitude of parameters : battery state of charge,

computational load, state of the bandwidth and more.

• Multi-objective optimization : While many Quality of

Services (QoS) can be optimized using IECC, managing

several of them is challenging.

These problems are well known and subject to numerous

studies in the literature. However, in most of these works,

tasks are described as generic IoT tasks that can easily be

distributed. While effective in some scenarios, distributing IoT

tasks cannot be applied for AI inference tasks.

This PhD focuses on developing energy efficient AI models

for the IECC taking advantage of its full capabilities. The

following points will be thoroughly studied and lead to the

main contributions of the PhD :

• The automatic and adaptive scaling of AI architectures on

the target device, based on the resources available, while

aiming to find the right balance between performance

(e.g., accuracy, precision), resource consumption, and

service requirements.

• The optimization of AI architectures for distributed intel-

ligence across the IoT-Edge-Cloud Continuum (IECC),

while preserving the data confidentiality. To minimize

communication latency, this optimization must be carried

out in conjunction with an efficient allocation of compu-

tational and communication resources.

II. RELATED WORKS

To address these challenges, we reviewed the different

solution currently proposed by the literature. Three major

approaches were identified to distribute deep learning models

across a large number of devices.

A. Ensemble models

Ensemble models seek to create prediction models expert

in a particular subgroup of all classes. An aggregation of all

models prediction is then done through different processes.

This method yields excellent results in terms of accuracy but

leads to higher computational load, both at training and infer-

ence time. Nevertheless, ensemble model seems a promising

solution for the IECC. In [1], for instance, the authors have

successfully deployed an ensemble of small models suited

for IoT nodes (i.e. nodes that respect power consumption

constraints) while reaching the accuracy of bigger neural

network .

B. AI Splitting

AI splitting aims to separate a deep learning network in

sub part that can then be executed on different machines.

The different existing approaches in the literature can be

classified in two categories. First, layer wise AI splitting type

of approach splits the model after certain layers. Doing so

allows to reduce the cost of data transmission, the output of an

intermediate layer being often way smaller than the initial data.

Introduced first in [2], many variants of this method have been

proposed, like introducing a bottleneck [3], creating multiple

splitting point [4] or using early exit [5].

On the other hand, parallelized splitting aims to create multiple

independent partitions. Doing so allows some degrees of paral-

lelization, thus greatly decreasing the models execution time.

While this method results in smaller latency, its complexity

and negative impact on accuracy usually makes it hard to

implement. Some of the most notable works on parallelized

splitting can be found in [6] and [7].

C. Neural Architecture Search

Neural architecture search (NAS) is used for a wide range

of neural networks. Using NAS-based methods, optimal archi-

tecture can be search and found, leading to better performance

for a desired task. NAS has already been successfully applied

to AI splitting in [8] where a convolutional neural network

(CNN) with integrated bottleneck was proposed, allowing for

better performance.

This approach can also be useful to create models suited

for the target device, reducing the computational load while

maintaining good performance.

III. ONGOING WORK

We are currently working on a new parallelized splitting

method based on [6]. In this paper, the authors present a

two-step training to create uniform semantic groups inside

layers that would allow model parallelization and parameter

reduction. This can be used to distribute an AI model over the

continuum and speed up its inference time. We focus on im-

proving this approach by addressing one of its shortcomings.

Having uniform group size is sufficient when multiple GPUs

are used for inference, but it is not suited for scenarios with

heterogeneous nodes having different computing capabilities.

Therefore, the regularization parameters must be changed so

that the size of each group can be chosen before the execution.

By doing so, group size will be adapted to the target device,

allowing for an optimal use of the resources on the continuum.

Figure 1 shows the workflow of our proposed solution.

Fig. 1. Non uniform parallelized splitting for the IECC

IV. CONCLUSION

This PhD aims at providing efficient solutions for the IECC

to execute deep learning models with low energy consumption

and low latency. In the future, we will :

• Propose approaches to distribute AI over the continuum

• Collect data from IoT sensors, Edge and Cloud nodes to

create a realistic test environment

• Compare our methods with the state of the art

• Validate our solutions by deploying in a real world

environment

REFERENCES

[1] Oihane Gómez-Carmona, Diego Casado-Mansilla, Diego López-de Ipiña,
and Javier Garcı́a-Zubia. Optimizing computational resources for edge
intelligence through model cascade strategies. IEEE Internet of Things

Journal, 9(10):7404–7417, 2022.
[2] Kang et al. Neurosurgeon: Collaborative intelligence between the cloud

and mobile edge. In ASPLOS ’17, ASPLOS ’17, page 615–629, New
York, NY, USA, 2017. Association for Computing Machinery.

[3] Jiawei Shao and Jun Zhang. Bottlenet++: An end-to-end approach
for feature compression in device-edge co-inference systems. In 2020

IEEE International Conference on Communications Workshops (ICC

Workshops), pages 1–6, 2020.
[4] Haneul Ko, Bokyeong Kim, Yumi Kim, and Sangheon Pack. Two-phase

split computing framework in edge–cloud continuum. IEEE Internet of

Things Journal, 11(12):21741–21749, 2024.
[5] Surat Teerapittayanon, Bradley McDanel, and H.T. Kung. Distributed

deep neural networks over the cloud, the edge and end devices. In 2017

IEEE 37th International Conference on Distributed Computing Systems

(ICDCS), pages 328–339, 2017.
[6] Juyong Kim, Yookoon Park, Gunhee Kim, and Sung Ju Hwang. SplitNet:

Learning to semantically split deep networks for parameter reduction and
model parallelization. In ICML’17, volume 70 of Proceedings of Machine

Learning Research, pages 1866–1874. PMLR, 06–11 Aug 2017.
[7] Jiale Chen, Duc Van Le, Rui Tan, and Daren Ho. Nnfacet: Splitting neural

network for concurrent smart sensors. IEEE Transactions on Mobile

Computing, 23(2):1627–1640, 2024.
[8] Shoma Shimizu, Takayuki Nishioy, Shota Saito, Yoichi Hirose, Chen Yen-

Hsiu, and Shinichi Shirakawa. Neural architecture search for improving
latency-accuracy trade-off in split computing. In 2022 IEEE Globecom

Workshops (GC Wkshps), pages 1864–1870, 2022.

A retrospective on DISPEED – Leveraging

heterogeneity in a drone swarm for IDS execution

Vincent Lannurien∗, Camélia Slimani∗, Louis Morge-Rollet∗,

Laurent Lemarchand†, David Espes†, Frédéric Le Roy∗, Jalil Boukhobza∗

Lab-STICC, CNRS, UMR 6285, { ∗ ENSTA, Institut Polytechnique de Paris, † Université de Bretagne Occidentale }, Brest

Email: {vincent.lannurien, frederic.leroy, jalil.boukhobza}@ensta.fr,

camelia.slimani@toulouse-inp.fr, louis.morge-rollet@grenoble-inp.fr, laurent.lemarchand@univ-brest.fr

Abstract—Swarms of drones are gaining more and more
autonomy and efficiency during their missions. However, security
threats can disrupt their missions’ progression. To overcome
this problem, Network Intrusion Detection Systems ((N)IDS) are
promising solutions to detect malicious behavior on network
traffic. However, modern NIDS rely on resource-hungry machine
learning techniques, that can be difficult to deploy on a swarm
of drones. The goal of the DISPEED project is to leverage
the heterogeneity (execution platforms, memory) of the drones
composing a swarm to deploy NIDS. It is decomposed in two
phases: (1) a characterization phase that consists in characteriz-
ing various IDS implementations on diverse embedded platforms,
and (2) an IDS implementation mapping phase that seeks to
develop selection strategies to choose the most relevant NIDS
depending on the context. On the one hand, the characterization
phase allowed us to identify 36 relevant IDS implementations
on three different embedded platforms: a Raspberry Pi 4B,
a Jetson Xavier, and a Pynq-Z2. On the other hand, the
IDS implementation mapping phase allowed us to design both
standalone and distributed strategies to choose the best NIDSs
to deploy depending on the context. The results of the project
have led to three publications in international conferences, and
one publication in a journal.

Index Terms—Swarm of drones, Network Intrusion Detection
Systems, heterogeneous computing

I. INTRODUCTION

Unmanned Surface Vehicles (USVs) are used to carry out

large-scale missions, which can involve drones with high

computing power and autonomy, as well as less expensive

drones with limited computing and battery capacity.

USVs operating in swarms (cooperation between USVs) can

accomplish far more complex missions. However, this implies

a high level of communication between drones, which can

expose them to a variety of attacks. It is therefore necessary

to detect attempted intrusions in good time and at low energy

cost, using Intrusion Detection Systems (IDS).

Modern IDSs are mostly based on machine learning (ML)

methods, where models are trained to identify abnormal and

potentially malicious traffic. However, running inferences on

ML models is generally costly in terms of computing and stor-

age resources (main memory and disks), as well as consuming

energy. It is therefore essential to optimize their execution

so that the IDS task has the least impact on resource use,

AID: Agence de l’Innovation de Défense

for USVs to accomplish their main tasks while ensuring a

satisfactory level of safety.

One possible approach is to take advantage of the hardware

heterogeneity that can exist among USVs, to choose the

hardware configurations best suited both to the level of security

required according to the geographical area in which the

swarm is evolving, and to the resources available (computing

and memory capacity) on the USV.

II. OVERVIEW OF THE DISPEED PROJECT

The aim of DISPEED is to explore possible trade-offs in

terms of safety, performance and energy for executing IDS

on a swarm of USVs by exploiting intra/inter-USV hardware

heterogeneity. Figure 1 shows the general operation of the

platform designed as part of the project:

• 1 Characterization of IDS models and execution

platforms: IDSs are based on different machine learning

algorithms (e.g. random forests, DNN) and deployed

on heterogeneous computing elements (e.g. CPU, GPU,

FPGA). We propose an offline methodology to charac-

terize this environment in terms of Quality of Service

(QoS) – latency, accuracy, energy consumption – and

resource metrics (memory usage, storage, etc.) [1], [2].

A key finding of this study is the significant disparity

in implementations characteristics, with many metrics

exhibiting trade-offs (e.g., higher accuracy often comes

at the cost of increased latency or energy consumption).

Consequently, the optimal IDS implementation depends

on the specific constraints of a given mission, motivating

further investigation in studies 2 and 3 ;

• 2 Distribution of traffic to be analyzed within the

swarm: based on measurements from the offline phase,

an online optimization strategy is implemented to decide

on a distribution of the traffic to be analyzed between the

drones in the swarm, so as to make the best compromise

between energy and QoS [3]. The distribution module

is decomposed in two steps: (1) drone capacity self-

assessment, and (2) flow distribution. On the one hand,

the drone capacity self-assessment allows each drone to

estimate its processing capacity, as well as its workload,

and broadcast it to the rest of the swarm. On the other

hand, the flow distribution allows determining how the

Fig. 1. High-level overview of the final system considered in DISPEED.

swarm will process the packet flows, while trying to

minimize communications overhead. At the end of this

phase, each drone can estimate its traffic load for the

future phase;

• 3 Mapping IDSs to USVs: the measurements from

the characterization phase are used as part of a mixed

offline/online optimization strategy that, depending on

the state of each USV in the swarm, the characteristics

of the IDS models and the state of the mission, selects

the IDS model best suited to the situation and deploys

it on the USV [4]. The selection process is divided

in two phases: (1) the offline phase, which objective

is to select implementations from the characterized set

that lie on the Pareto front, while ensuring they meet

the USV’s storage constraints; and (2) the online phase,

which consists in filtering the implementations that satisfy

the live mission constraints, and choosing among them

the implementation that hits the best trade-off between

QoS metrics.

The aim is to explore different models of IDS, and im-

plement them on different hardware architectures, in order to

extract data on the level of security guaranteed by the model,

as well as the time and energy cost of its implementations.

Given the characteristics of all the implementations, the aim

is to select the best implementation during the mission, i.e.

the one that achieves the best compromise between security,

performance and energy.

This heterogeneity can also be exploited to distribute the

load in the swarm. The availability of each drone in the swarm

can change during the course of a mission - depending on the

criticality of the tasks allocated to it, but also in relation to a

possible breakdown, for example. In this way, the distribution

of the analysis work to be carried out on each drone can evolve

during the course of a mission, so as to guarantee QoS. This

flow distribution in a distributed system like a swarm of drones

is not trivial, and requires rigorous analysis and optimization

techniques to guarantee intrusion detection within the allotted

time.

III. CONCLUSION

In DISPEED, we devised a framework for IDS deployment

on a swarm of heterogeneous drones. In order to optimize the

system for energy consumption while enforcing QoS under

security constraints, our solution considers the system at the

granularity of the swarm to optimize traffic distribution across

the drones; and at the granularity of a drone to optimize IDS

selection. To sum up our general approach, DISPEED lever-

ages hardware heterogeneity across a swarm of edge devices to

satisfy resource constraints as well as operational constraints

during various missions. Perspectives for future work include

considering the actual deployment phase. Indeed, drones are

mixed-criticality systems hosting workloads that compete for

shared resources. As interferences between various processes

arise on such capacity-limited devices, a scheduling strategy

that consider individual drones as well as the swarm as a whole

might be necessary to maintain adequate levels of QoS.

REFERENCES

[1] C. Slimani, L. Morge-Rollet, L. Lemarchand, F. Le Roy, D. Espes, and
J. Boukhobza, “Characterizing intrusion detection systems on hetero-
geneous embedded platforms,” in 2023 26th Euromicro Conference on

Digital System Design (DSD), Durres, Albania, Sep. 2023, pp. 278–285.
[2] C. Slimani, L. Morge-Rollet, L. Lemarchand, D. Espes, F. Le Roy, and

J. Boukhobza, “A study on characterizing energy, latency and security
for intrusion detection systems on heterogeneous embedded platforms,”
Future Generation Computer Systems, vol. 162, p. 107473, 2025.

[3] L. Morge-Rollet, C. Slimani, L. Lemarchand, D. Espes, F. Le Roy, and
J. Boukhobza, “DisPEED: Distributing Packet flow analysis in swarm
of heterogeneous EmbEddeD platforms,” in 2025 Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2025.
[4] L. Morge-Rollet, C. Slimani, L. Lemarchand, F. L. Roy, D. Espes, and

J. Boukhobza, “IDS-DEEP: a strategy for selecting the best IDS for
Drones with heterogeneous EmbEdded Platforms,” in 2024 IEEE 36th In-

ternational Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD). Los Alamitos, CA, USA: IEEE Computer
Society, Nov. 2024, pp. 138–147.

Comparative Study of Safety and

Security-Protected AES Designs

Daniel THIRION†§, Jean-Marc DAVEAU†, Valentin EGLOFF§,

David HELY§, Vincent BEROULLE§, Philippe ROCHE†

†STMicroelectronics, 850 Rue Jean Monnet 38926 Crolles Cedex, France (firstname.lastname@st.com)
§Univ. Grenoble Alpes, LCIS, 50 Rue Barthélémy de Laffemas, 26000 Valence, France (firstname.lastname@lcis.grenoble-inp.fr)

Abstract—With the rise of cybersecurity requirements in
critical systems like vehicles and satellites, combining functional
safety and hardware security is essential. While safety and se-
curity methods are studied individually, their combined analysis
at the RTL or Netlist level is less explored. This paper analyzes
multiple AES designs—unprotected, safety-protected (Lockstep),
and security-protected (Parity-Predictor)—using simulation and
formal methods. We highlight challenges and opportunities for
combined assessments, evaluate designs against ISO 26262 safety
metrics, and analyze their resilience to laser fault attacks, pro-
viding insights into their security robustness and the interaction
of safety and security.

Index Terms—Functional Safety, Security, RTL Design, AES,
Fault Attack, ISO 26262, Single-Event Upset, Formal Proof

I. INTRODUCTION

Functional Safety and embedded security are increasingly

mandated for critical integrated circuits in aerospace or au-

tomotive. However, safety and security are often handled

separately, overlooking potential interactions: safety counter-

measures (e.g., redundancy) might increase the attack surface,

while security measures (e.g., encryption) can complicate

safety verification [1]. Early design-phase analysis of these

interactions is crucial for reducing costs and time-to-market.

The literature lacks detailed studies on safety/security inter-

actions at the RTL/Netlist level [2]. This work explores this

gap by proposing an analysis workflow combining simulation

and formal methods. We apply this workflow to compare

an AES design protected for safety (Lockstep) against one

protected for security (Parity/Predictor). Our goal is to an-

swer: how does a safety-protected design fare against security

threats, and vice versa? Which tools and methods are suitable

for this combined analysis at the hardware design level?

This paper first presents the safety and security analysis

methodologies and tools. Then, it applies them to the AES

case study, comparing the effectiveness of safety and security

countermeasures across both domains. Finally, it discusses the

results and methodological insights.

II. METHODOLOGY

A. Safety Analysis

Functional safety aims to ensure safe operation even with

hardware faults, primarily targeting random radiation-induced

Single Event Upsets (SEUs) and Transients (SETs) [3]. Coun-

termeasures often involve redundancy. We assess effectiveness

using metrics and fault classes defined in ISO 26262. Faults

are categorized based on output correctness and detection

status (2 × 2 matrix of Unobserved/Dangerous + Unde-

tected/Detected), and classes are defined as:

• λSPF : Single Point Faults (Dangerous Undetected [DU]

in unprotected area)

• λRF : Residual Faults (DU in protected area)

• λMPF/L: Latent Multiple Point Faults (DU when fault

injected in both functional and countermeasure)

• λMPF/D: Detected Multiple Point Faults (DD)

• λS : Safe Faults (UU, DU or DD)

Key metrics derived are Diagnostic Coverage (DC), Single-

point fault metric (MSPFM), and Latent fault metric (MLFM).

Higher values are better. We use Monte-Carlo fault simulation

to inject random SEUs and estimate these metrics [4].

B. Security Analysis

Hardware security analysis often follows frameworks like

Common Criteria or ISO/SAE 21434. We focus on fault

attacks (e.g., laser, glitching), which intentionally induce faults

to extract secrets. Unlike safety’s random fault model, security

assumes a targeted attacker capable of inducing potentially

complex, multi-bit faults. As such, this analysis requires

exhaustive vulnerability search.

Our workflow involves: (1) Understanding the design and

known attacks (e.g., Differential Fault Analysis on AES). (2)

Defining security properties (e.g., ”valid ciphertext or error

raised”). (3) Using Formal Fault Injection (FFI) [5] to exhaus-

tively find faults (locations and timing) that violate properties.

(4) Analyzing found vulnerabilities for exploitability.

Instrumentation of the design flip-flops is done to allow the

formal engine to inject faults (bit-flips, SEU model) and find

counterexamples. Unlike simulation, FFI aims for full proof

or finding all violations under given constraints.

III. AES CASE STUDY

We apply our methodology to three AES-128 designs:

• Vanilla: Base design from [6] (countermeasures re-

moved), serving as a reference. Consists of data, key, and

control units.

• Lockstep: Duplicates the vanilla AES with a 6-cycle

delay between cores . Outputs are compared; mismatches

raise an error. This is a typical safety countermeasure.

• Parity: Design from [6] using parity prediction . Parity

bits are added to data/key paths and checked against

predicted values. Designed against laser fault attacks.

Control unit is unprotected per original source.

Error handling (e.g., recomputation, masking output) is as-

sumed at the system level but not implemented here.

A. Naive Fault Injection Comparison

Simulated single-bit fault injections (Figs. 1) provide a

simple view of the design response to injection. The Lock-

step design has a high fault masking (UU), reducing false

positive rate (UD). The Parity design, however, has a high

detection rate (UD), minimizing masked faults. This highlights

a fundamental difference: safety often benefits from masking

non-critical faults (minimizing false-positives), while security

prefers detecting any deviation (maximizing detection).

Original Lockstep Copy

(a) Lockstep

Data Unit Key Unit Predictor

(b) Parity

Fig. 1: Naive fault injection classification vs. injection time

(Y-axis) and element index (X-axis)

B. Safety Metrics Analysis

ISO 26262 metrics were computed via fault simulation

(TABLE I). Lockstep achieves 100% MSPFM , being fully re-

silient to single-point faults. Parity’s MSPFM is slightly lower

(98.04%) due to the unprotected control unit contributing to

λSPF ; if excluded or protected, it would also reach 100%.

Both designs show high resistance to latent multi-point faults

(MLFM > 99.9%), with Lockstep being marginally better due

to the temporal separation making simultaneous identical er-

rors harder. The Parity design, despite being security-oriented,

demonstrates excellent safety performance against the ISO

26262 random fault model, meeting requirements potentially

up to ASIL D (if unprotected parts addressed).

Vanilla Lockstep Parity

Instrumented FFs 848 1696 1010

λs (%) 70.38 85.32 80.59

λSPF (%) 14.94 0.00 1.02

λRF (%) N/A** 0.00 0.00

λMPF/D (%) N/A** 14.68 18.35

λMPF/L (%) 14.68 0.01 0.04

DC (%) N/A** 100.00 100.00

MSPFM (%) 70.13 100.00 98.04

MLFM (%) 70.57(±0.49∗) 99.996(+
−
0.01∗) 99.916(+

−
0.03∗)

∗95% confidence level; **No countermeasure

TABLE I: Safety Metrics Comparison

C. Security Analysis via Formal Methods

We use FFI to assess resilience against DFA, targeting the

property: ”The ciphertext is valid OR the detection signal is

raised.”. To simplify proof, we use a fixed key/plaintext. For

Parity, we constrained FFI to ignore simultaneous injections

into the same parity group (assumed uncovered by the protec-

tion).

Both Lockstep and Parity designs are proven secure against

single-bit faults. For dual-bit faults (M=2), FFI found violating

sets:

• Lockstep: 82 sets found, faults which are hard to explain

due to the time difference and the complexity of AES.

• Parity: 2405 sets found (excluding same-group injec-

tions), exploiting faults in corresponding bits of the main

logic and the predictor logic.

These M=2 vulnerabilities could potentially be exploited by

precise laser attacks but might be mitigated by careful physical

placement (separating Lockstep cores or Parity and Predictor

cores). Formal analysis is significantly faster (2 years vs. 1

week) than exhaustive simulation for finding M = 2 sets.

Formal proof struggled with M = 3 due to state space

explosion and redundant findings of M = 2 sets.

IV. CONCLUSION AND PERSPECTIVES

This paper explored combined safety and security analysis

of AES designs using simulation and formal methods. Our

findings highlight key trade-offs:

• Lockstep (safety): high safety metrics (MSPFM ,

MLFM) and high fault masking, but its lower detection

rate makes it less ideal for security.

• Parity (security): high safety metrics (ASIL D capable),

could be a candidate in a safe and secure design. How-

ever, a high detection rate, while beneficial for security,

creates many ”false positives” from a safety perspective

(detecting functionally safe faults).

This shows a need for countermeasures that can offer distinct

error signals for safety-critical and security-critical events.

Methodologically, Formal Fault Injection is significantly

more efficient than simulation for exhaustive security vulnera-

bility searches, especially when the violation space is relatively

small. However, its scalability to higher fault multiplicities

(M ≥ 3) remains a challenge.

Future work should explore other fault models (e.g., timing

faults, SETs) and analyze non-cryptographic IPs to generalize

these findings.

REFERENCES

[1] N. Wiersma and R. Pareja, “Safety != security: On the resilience of ASIL-d

certified microcontrollers against fault injection attacks,” in 2017 Workshop on

Fault Diagnosis and Tolerance in Cryptography (FDTC), 2017, pp. 9–16. DOI:

10.1109/FDTC.2017.15.

[2] Priyadarshini, S. Greiner, M. Massierer, and O.-E.-K. Aktouf, “Feature-based

software architecture analysis to identify safety and security interactions,” in

2023 IEEE 20th International Conference on Software Architecture (ICSA), 2023,

pp. 12–22. DOI: 10.1109/ICSA56044.2023.00010.

[3] G. R. Srinivasan, “Modeling the cosmic-ray-induced soft-error rate in integrated

circuits: An overview,” IBM J. Res. Dev., vol. 40, no. 1, pp. 77–90, 1996. DOI:

10.1147/RD.401.0077.

[4] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault injection:

Quantified error and confidence,” in 2009 Design, Automation & Test in Europe

Conference & Exhibition, 2009, pp. 502–506. DOI: 10.1109/DATE.2009.5090716.

[5] D. Zuccala, J.-M. Daveau, P. Roche, and K. Morin-Allory, “Formal temporal

characterization of register vulnerability in digital circuits,” in 2023 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), Jun. 2023, pp. 1–6.

DOI: 10.1109/ISVLSI59464.2023.10238514.

[6] C. Ananiadis, A. Papadimitriou, D. Hély, V. Beroulle, P. Maistri, and R. Leveugle,

“On the development of a new countermeasure based on a laser attack RTL fault

model,” in 2016 Design, Automation & Test in Europe Conference & Exhibition

(DATE), Mar. 2016, pp. 445–450.

Multi-Trojan Radio-Frequency Retroreflector

Attacks

Pierre Granier, Marie-Aı̈nhoa Nicolas, Jordane Lorandel, Christophe Moy,

Philippe Besnier, Matthieu Davy, François Sarrazin

Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000

Rennes, France

{pierre.granier, marie.nicolas, jordane.lorandel, christophe.moy, matthieu.davy, francois.sarrazin}@univ-rennes.fr

philippe.besnier@insa-rennes.fr

Abstract—This paper demonstrate the feasibility of data exfil-
tration from multiple signal lines through the use of implanted
retroreflectors, each tuned to distinct optimal interrogation fre-
quencies. The effectiveness of the proposed attack is illustrated
by recovering the color information of a picture transmitted over
a VGA cable.

Index Terms—Hardware Trojan, Electromagnetic information
security, Backscattering, Intentional electromagnetic interference

I. INTRODUCTION

Information recovery from electromagnetic leakage is by

now a well-known risk in electromagnetic cybersecurity. Ex-

tensive work on video display has been led since the pioneer-

ing work of Wim van Eck in 1985 [1] on analog CRT, later

expanded on the VGA protocol [2], [3], and on TMDS based

interfaces such as HDMI/DVI. Such attacks are classified as

passive since they do not require any software or hardware

modifications to the targeted device. Their success heavily

depends on the target’s electromagnetic emissions as well as

the surrounding radio environment.

Beyond passive eavesdropping, an adversary capable of

modifying a device (during the supply chain process or post

distribution) can enable a broader class of attacks. Among

these, hardware Trojans utilizing retroreflectors are particularly

notable because they remain inactive until illuminated by an

external RF source, making them more stealthy than perma-

nent transmitters. The first known example of a retroreflector,

called ”The Thing” was used in the early days of the Cold

War for eavesdropping surrounding audio. This type of attack,

labeled as Radio-Frequency Retroreflector Attack (RFRA),

was later adapted for spying on modern electronic as shown in

leaked NSA documents [4] and later reproduced by academics

[5].

This paper develops the concept of a multi-Trojan RFRA

leveraging frequency diversity. This approach can target either

multiple devices or multiple signal lines within a single target.

To illustrate this concept, we showcase an attack on the three

This publication is supported by the European Union through European
Regional Development Fund (ERDF), Ministry of Higher Education and
Research, CNRS, Brittany region, Conseils Départementaux d’Ille-et-Vilaine
and Côtes d’Armor, Rennes Métropole, and Lannion Trégor Communauté,
through the CPER Project CyMoCod, and by the French “Agence Nationale
de la Recherche” (ANR) under Grant ANR-22-CPJ1-0070-01.

TX

RX
Secret data

Backscattered signal

Illumination signal

SDR

SDR

Fig. 1. RF Retroreflector Attack (RFRA) principle. It is composed of an SDR-
based interrogation setup (right) and a target (left) consisting of an antenna
terminated by a varying load.

color components (Red, Blue, and Green) of a VGA cable,

enabling the retrieval of colored images.

II. TROJAN ARCHITECTURE AND INTERROGATION

The principle of RFRA is illustrated in Fig. 1. A hardware

Trojan is embedded within a target, and connected to a signal

line. The Trojan consists of an antenna whose load impedance

varies in response to the data line signal. The changes at the

antenna load impedance modify the reflective properties of the

antenna, effectively making the Trojan a backscatter device (in

a similar fashion to an RFID tag). Interrogation is made by

illuminating the implant with a carrier wave and observing

its reflection, both typically achieved using a software-defined

radio (SDR).

In [4], [5] the Trojan’s design is based on a transistor.

The shielding of the targeted cable is cut, and the transistor’s

drain and source terminals are connected to the resulting

separated shield sections, effectively forming a dipole antenna

characterized by an impedance Zant. The signal line targeted

for interception is connected to the transistor gate, driving

the impedance Zload between drain and source. The reflec-

tion coefficient of the implant is given by Γ = (Zload −
Z∗

ant)/(Zload + Zant) dictating changes in the backscattered

signal.

Our Trojan implementation (shown in Fig. 2) differs from

the previously described architecture by two aspects. First, we

switched from a transistor-based architecture to a diode-based

architecture, applying a bias voltage across the anode and

Dipole

GND

Dipole
BAR63-02V

Fig. 2. VGA passthrough where a hardware Trojan probes the red signal line
of the video data.

cathode of the diode, as opposed to the gate and source in the

transistor-based configuration. Second, rather than repurposing

the cable shielding, we chose to simplify the experiment by

using custom-made PCBs similar to the work of [6] where

the antenna part is made from added wiring creating a dipole.

While this design is not optimized for stealth, it could be

translated to a more covert proof of concept by introducing

selective gaps in the cable shielding, enabling the formation

of dipole antennas of various lengths.

III. MULTIPLE TROJAN RFRA

−15

−10

−5

0

S
1
1
(d
B
)

l = 16 cm l = 13 cm l = 10 cm
(a)

350 400 450 500 550 600 650 700

Frequency MHz

−0.04

−0.02

0.00

0.02

0.04

∆
|
S
1
1
|

405.5 MHz 474.5 MHz 600 MHz(b)

Fig. 3. (a) Simulation of the Trojans antennas S11 (dB). (b) BAR63-02V
based Trojan ∆|S11| using three different antenna lengths. (Dashed lines)
interrogation frequencies used for recovering the RGB matrix.

A. Multi-trojan characteristic

We use the previously described Trojan, changing only the

RGB line probed and the dipole length to obtain antennas of

different resonant frequencies. The chosen antenna lengths are

lG = 10 cm, lR = 13 cm and lB = 16 cm. Simulations of

the reflection coefficients S11 of the three antennas created

are presented in Fig. 3(a), revealing resonant frequencies near

420 MHz, 520 MHz and 650 MHz for the blue, red and green

Trojan, respectively.

For each Trojan, we can measure the difference of |S11|
(shown Fig. 3(b)) using one of the interrogation antennas we

will later use (a log-periodic LP0410 antenna) connected to

a vector network analyzer. This difference in |S11|, shown

in Fig. 3(b), provides insight into the frequency-dependent

effectiveness of each Trojan when amplitude demodulated.

B. Experiment

Using the three previously characterized implants integrated

into a VGA cable, we connect a laptop displaying the picture

shown in Fig. 4(a) to an external desktop monitor. The laptop’s

graphics card transmits analog voltage levels between 0 and

0.7 V for each pixel’s color channel (red, green, and blue),

rendered sequentially pixel-by-pixel, line-by-line, and frame-

by-frame.

Positioned approximately two meters away, we illuminate

the target using a log-periodic antenna connected to a signal

generator, while receiving the backscattered signal with a

software-defined radio (SDR) connected to a second log-

periodic antenna. Amplitude demodulation and illumination

are performed at the frequencies where each color component

exhibits a dominant Trojan response, as identified in Fig. 3(b).

By capturing a few frames per Trojan (i.e., per color channel),

we reconstruct the RGB image shown in Fig. 4(b), yielding a

visual approximation of the original image in Fig. 4(a).

(a) (b)

Fig. 4. (a) Targeted picture, (b) Rasterization result.

IV. CONCLUSION

We demonstrated through the successful extraction of all

three RGB channels that careful design in multiple Trojan

implementations allow for frequency discrimination of their

responses. This approach sparks the possibility of interrogating

multiple co-located targets or distinct data lines within a

composite link.

REFERENCES

[1] W. van Eck, “Electromagnetic radiation from video

display units: An eavesdropping risk?” Computers &

Security, vol. 4, no. 4, pp. 269–286, 1985, ISSN: 0167-

4048.

[2] M. G. Kuhn, “Compromising emanations,” in Encyclo-

pedia of Cryptography and Security, 2003.

[3] M. Marinov, “Remote video eavesdropping using a

software-defined radio platform,” 2014.

[4] NSA. “NSA ANT catalog.” (2008 (redaction)).

[5] M. Kinugawa, D. Fujimoto, and Y. Hayashi, “Elec-

tromagnetic information extortion from electronic de-

vices using interceptor and its countermeasure,” IACR

Transactions on Cryptographic Hardware and Embedded

Systems, vol. 2019, no. 4, 62–90, Aug. 2019. DOI: 10.

13154/tches.v2019.i4.62-90.

[6] M. Ossmann. “The NSA playset: RF retroreflectors.”

(2014).

Accelerating Transformer Networks on FPGA

Two-page paper for GDR SoC2 poster session submission

Eric Chen∗† Hadi Saoud∗ Nicolas Vigne∗ Florent de Dinechin†

∗cortAIx Labs, Thales Research & Technology, 91767 Palaiseau, France
†INSA Lyon, Inria, CITI, UR3720, 69621 Villeurbanne, France

eric.chen@thalesgroup.com

Abstract—In 2017, Google published an article proposing a
neural network architecture based on the attention mechanism,
named transformer. This new neural network has revolutionized
the field of artificial intelligence (AI) by becoming the new
state-of-the-art in various tasks. However, they have higher
computational complexity and larger model sizes compared
to recurrent neural networks (RNNs) or convolutional neural
networks (CNNs), which leads to strong embedded system con-
straints. This work is a survey of the difficulties to address when
implementing transformer accelerators on field programmable
gate arrays (FPGAs), such as hardware architecture, memory
constraints and non-linear function approximation.

Index Terms—neural network, transformer, FPGA, computer
architecture, high-performance computing.

I. INTRODUCTION

Transformers are a class of deep neural networks that have

revolutionized AI by introducing a novel mechanism called

attention [1]. This mechanism contextualizes data and ensures

that relevant information is appropriately highlighted [1], [2],

[3]. Transformers also rely on attention to capture long-

range dependencies, which contrasts with CNNs that operate

using localised convolution [2], [4]. However, this advantage

increases the computational complexity of transformers. Most

of today’s accelerators adopt graphics processing units because

of their high-performance computing and easy software imple-

mentation [1], [4], [5]. However, they are hardly compatible

with embedded constraints like latency, power consumption

or thermal dissipation [6], [7]. FPGAs are good candidates

for transformers acceleration since they address many of

these challenges, notably efficient performance and scalability

[7], [8], [9]. Indeed, they deliver high performance with

low latency, flexibility with their reconfigurable hardware,

and efficiency with their low power consumption. This work

will present the difficulties encountered when implementing

transformer accelerators on an FPGA.

II. TRANSFORMERS

Transformers consist of multiple successive layers known as

encoder/decoder, which are presented in Fig. 1b. Each layer is

composed of sub-layers, featuring layer normalization (LN),

residual connection, multi-head self attention (MHSA), and

multilayer perceptron (MLP). MHSA is used for the attention

while MLP is used to introduce non-linearity with an activation

function called Gaussian Error Linear Unit (GELU).

(a) MLP
(b) Encoder de-
coder

(c) MHSA
(d) Scaled dot-
product attention

Fig. 1: Transformer encoder/decoder layer architecture.

To delve deeper into the sub-layers, MHSA is made of dif-

ferent operations, comprising linear operations, concatenation,

and self dot-product attention along with a non-linear function

referred to as Softmax (shown in Fig. 1c and Fig. 1d). These

operations manipulate two-dimensional matrices of size up to

N×D. Table I describes parameters with example values from

a vision transformer (ViT) [3], [5]. The “head” in MHSA refers

to performing multiple initial linear operations and scaled dot-

product attention by multiple parallel instances.

The MLP depicted in Fig. 1a contains two fully con-

nected (FC) layers using linear operations, separated by the

GELU non-linear function. These operations manipulate two-

dimensional matrices of size up to D × 4D.

As discussed, transformer encoder/decoder layers utilize

multiple large-sized matrices in their operations, which in-

creases the complexity of transformer accelerators on FPGAs.

They also exploit non-linear functions like Softmax and GELU

which are difficult to approximate in hardware with limited

resources and without accuracy degradation.

TABLE I: Usual ViT parameters

Parameters Description ViT [3], [5] value

L number of layers 12

h number of heads 12

N token dimension 196

D model dimension 768

d model dimension per head d = D/h = 64

III. HARDWARE IMPLEMENTATION CONSTRAINTS

As presented in the previous section, transformers are

composed of successive encoder/decoder layers, where each

one includes various operations on matrices. Therefore, the

main challenges are:

A. Implementing an efficient architecture.

B. Addressing memory constraints.

C. Approximating non-linear functions.

A. Efficient architecture

In FPGAs, two main types of architecture are used to

design an accelerator: the spatial architecture and the tem-

poral architecture [7]. Other designs are variants or hybrids

that incorporate the two primary architectures, and can be

implemented at different scales from coarse to fine granularity.

The spatial or dataflow architecture consists of multiple

engines where each engine can only perform one type of func-

tion. The output of an engine serves as the input of another,

and data are processed in a pipelined manner. This type of

architecture is very efficient in performance and resources

but suffers from a lack of flexibility and customization. It

also requires careful tuning to ensure consistent throughput,

otherwise the accelerators will significantly slow down due to

bottlenecks caused by the starve and stall of each engine [8].

The temporal or overlay architecture consists of a single

engine that can perform multiple functions. This design offers

the advantage of being flexible and micro-controllable, but

only one input is processed at a time. It also suffers from

resource consumption due to multiple intermediate buffers [9].

The main difficulty is to find an architecture that can ensures

efficient inference with minimal impact on accuracy, while

also providing high throughput, low latency, flexibility and

limited resource utilization.

B. Memory constraints

Transformers have a larger model size and memory footprint

compared to RNNs or CNNs [9], [10], [11]. For example,

ViT has over 86 million parameters [3]. The on-chip memory

resources in FPGAs are highly performant but limited in

size. In contrast, off-chip memory offers significantly larger

capacity but is much slower and introduces higher latency [9].

The main challenge is to manage the multiple large matrices

involved in transformers within the limited on-chip memory,

while efficiently handling data movement from off-chip mem-

ory without increasing the latency.

Quantization is a method that can also help alleviate

memory constraints by reducing the model’s data to smaller

bitwidths or less complex datatypes [6], [10]. It primarily

targets the model’s activations and weights to reduce memory

bandwidth usage and computation but it can affect the accu-

racy, since fewer bits are allocated for processing. Usually,

neural network models operate with floating-point precision

but FPGAs are much more efficient with integer-only compu-

tation. This lead to hardware implementations using integer or

fixed-point with bitwidths that are no higher than 16 bits [6],

[7], [10], [12], [13].

To address the memory constraints, choosing the correct

quantization is essential to reduce memory footprint and accel-

erate transformer models with minimal accuracy degradation.

C. Non-linear functions

Transformers exploit non-hardware-friendly non-linear

functions Softmax and GELU in each transformer block [2],

[4], [3], [5]. Therefore, approximating these functions for

acceleration is necessary to increase throughput and reduce

latency. The difficulties come from the degradation in accuracy

when approximating these functions in hardware under limited

power and resource utilization. Several approximations have

been proposed, including shift operations [10], changing the

base exponential to base 2 and logarithms [12], polynomial

second-order approximations [13], tabulating the value in LUT

[13], [14] or completely changing the activation function to a

more hardware-friendly one [9].

IV. CONCLUSION

Designing an FPGA-based accelerator for transformers

proves to be challenging due to numerous embedded con-

straints. Transformers have larger model sizes compared to

RNNs or CNNs. They also have higher computational com-

plexity because of multiple successive layers that use non-

linear functions. This generates constraints when designing an

accelerator such as hardware architecture, memory constraints

and non-linear function approximations.

This paper explores these main challenges when implement-

ing transformer accelerators on FPGAs.

REFERENCES

[1] A. Vaswani et al., “Attention is All you Need,” in NIPS, 2017.
[2] Z. Liu et al., “Swin Transformer: Hierarchical Vision Transformer using

Shifted Windows,” in ICCV, 2021.
[3] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers

for Image Recognition at Scale,” in ICLR, 2021.
[4] W. Wang et al., “InternImage: Exploring Large-Scale Vision Foundation

Models with Deformable Convolutions,” in CVPR, 2023.
[5] H. Touvron et al., “Training data-efficient image transformers & distil-

lation through attention,” in ICML, 2021.
[6] Z. Liu, G. Li, and J. Cheng, “Hardware Acceleration of Fully Quantized

BERT for Efficient Natural Language Processing,” in DATE, 2021.
[7] H. Chen et al., “Understanding the Potential of FPGA-Based Spatial Ac-

celeration for Large Language Model Inference,” in ACM Transactions

on Reconfigurable Technology and Systems, vol. 18, no. 1, pp. 1-29,
2024.

[8] T. Wang et al., “ViA: A Novel Vision-Transformer Accelerator Based on
FPGA,” in IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 41, no. 11, pp. 4088-4099, 2022.
[9] K. Marino, P. Zhang and V. K. Prasanna, “ME- ViT: A Single-Load

Memory-Efficient FPGA Accelerator for Vision Transformers,” in HiPC,
2023.

[10] Z. Li and Q. Gu, “I-ViT: Integer-only Quantization for Efficient Vision
Transformer Inference,” in ICCV, 2023.

[11] J. Fowers et al., “A Configurable Cloud-Scale DNN Processor for Real-
Time AI,” in ISCA, 2018.

[12] M. Huang et al., “An Integer-Only and Group-Vector Systolic Accel-
erator for Efficiently Mapping Vision Transformer on Edge,” in IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 12,
pp. 5289-5301, 2023.

[13] Q. Dong, X. Xie and Z. Wang, “SWAT: An Efficient Swin Transformer
Accelerator Based on FPGA,” in ASP-DAC, 2024.

[14] T. Hubrecht, O. Desrentes and F. de Dinechin, “Activations in Low Pre-
cision with High Accuracy,” 2024, hal-04776745. [Online]. Available:
https://inria.hal.science/hal-04776745v1

Exploiting Near-Data Processing for Far-Edge

Applications

Fiona Santoro∗†, Jean-Marc Philippe∗, Philippe Coussy†, Kevin Martin†

∗cortAIx Labs, Thales Research and Technology, Palaiseau, France
†Univ. Bretagne-Sud, CNRS UMR 6285, Lab-STICC, Lorient, France

fiona.santoro@thalesgroup.com

Abstract—Data movements between the levels of the memory
hierarchy are a costly part of an application execution. They
significantly increase the energy consumption and latency, while
reducing the available bandwidth. A possible solution is to move
the computation closer to the data, like in near-data processing
and edge computing paradigms. In the latter, and especially for
far-edge applications relying on ruggedized servers or embedded
systems, the energy efficiency is paramount. This paper proposes
to use near-data processing approaches and associated devices
to optimize the performance and energy efficiency of far-edge
servers. It presents typical applications that benefit from near-
data processing paradigm and gives an analysis that provides first
interesting properties that make applications good candidates for
such an approach.

I. INTRODUCTION

Data movements are costly during an application execu-

tion. They represent a significant part of the total energy

consumption and latency, and reduce the available bandwidth.

For example, in cloud computing those transfers have raised

in the past years due to the substantial increase in data

generated and collected by the end users devices and sensors.

In fact, those movements can cause up to 60% of the total

energy consumption of an entire datacenter application [1]. An

other example is the memory hierarchy of computing systems,

depicted in Fig. 1. For instance, an 8-bit integer multiply

operation is orders of magnitude less energy consuming than a

DRAM read [2]. To reduce these transfers, computations can

be offloaded closer to the data, such as in edge computing

and near-data processing (NDP) approaches. More precisely,

the edge computing paradigm consists in offloading parts of

the applications to the end users devices or intermediate com-

puting platforms between the end user and the cloud servers.

Inside a computing server, near-data processing reduces in-

ternal data movements using Computational Storage (CS) or

Processing in Memory (PiM) techniques. They respectively

place compute resources at the storage or the main memory

levels of the memory hierarchy, as illustrated in Fig. 1.

Devices implementing these techniques could be interesting

components of far-edge computing architectures, which rely

on ruggedized servers or embedded systems. These architec-

tures can be found in drones, radars, military vehicles where

performance and energy efficiency are of high interest. This

paper proposes to use NDP paradigms to improve far-edge

applications. It presents a first analysis on key characteristics

of applications that make them suitable for applying NDP

Fig. 1. Typical memory hierarchy diagram including near-data processing PiM
and CS approaches with example architectures and latencies. M represents the
memory technology (e.g. DDR for PiM and flash for CS) and C the added
compute element (e.g. processor units for PiM and an FPGA for CS).

techniques in the far-edge computing context. The remainder

of this work is organized as follows. Section II explains the

paradigm of NDP and lists some related devices. Section III

analyzes typical NDP applications to extract their key charac-

teristics. Section IV concludes the paper.

II. NEAR-DATA PROCESSING PARADIGM

A. Introduction of the NDP concepts

Modern computing systems implement a memory hierarchy

to create the illusion of an infinite and fast memory for the

processing unit (CPU). This hierarchy is based on several

levels of different memory technologies with data transfers

between them. At the top, there are the fastest memories

but with reduced capacity and, at the bottom, those with

the highest capacity and latency. NDP paradigm consists in

placing a compute unit at one level of the memory hierarchy

(see Fig. 1). In this study on far-edge systems, we only

consider main memory and storage levels (PiM and CS).

Processing in Memory consists in adding compute capabil-

ities at the main memory level (DRAM, HBM, etc.), as visible

in Fig. 1. PiM can be subdivided into two main categories.

The oldest one is Processing Using Memory (PUM), it

uses intrinsic characteristics of the memory technology with

minimal changes to implement new functionalities. The second

one is Processing Near Memory (PNM), it adds a computing

core near the memory. Industrially, it is usually near the banks.

In academical and theoretical approaches, cores are at the

subarray and row-buffer levels. PiM efficiently reduces data

transfers at the cost of a new programming model and code

reorganisation to take advantage of it [3].

Computational Storage consists in adding computation

capabilities at the storage level (Fig. 1). According to the

Storage Networking Industry Association (SNIA), CS devices

(CSx) can be defined as a storage component containing

Computational Storage Engines (CSEs) (e.g. processors or

FPGAs), aiming to execute Computational Storage Functions

(CSFs) (specific storage operations such as compression).

CSx can be classified into three categories. The first one is

Computational Storage Drive (CSD), a storage element that

contains one or more CSEs and persistent data storage (e.g.

an SSD with internal compute capabilities). The second one is

Computational Storage Processor (CSP), a component that

contains one or more CSEs for an associated storage system,

without providing persistent data storage itself (e.g. an FPGA

board interacting with an SSD). The last one, Computational

Storage Array (CSA), is a storage array with one or more

CSEs (e.g. a RAID server with a CSA and multiple SSDs).

B. Related NDP devices

This subsection presents examples of PiM and CS devices

implementing the NDP approach.

Processing in Memory. UPMEM proposes a PNM device

relying on custom DDR4 memory chips embedding general-

purpose DRAM Processing Units (DPU). SK-Hynix intro-

duces the AiM (Accelerator in Memory) GDDR6 chip includ-

ing optimized hardware Artificial Intelligence (AI) computing

elements (such as MAC or internal lookup tables). Samsung

unveils AxDIMM (Accelerator DIMM), a DDR4-compatible

FPGA-based PNM platform exploiting rank-level parallelism.

It accelerates embedding lookup and pooling AI operations.

Computational Storage. AMD and Samsung proposed the

SmartSSD, an U.2 drive in which an FPGA is connected to a

2TB NVMe flash disk thanks to PCIe switch. NGD Systems

presented the NewPort platform with an ASIC accelerator,

based on an ARM Cortex-A53 core embedded in the SSD

controller. The ARM A53 core is also used in the Key-

Value (KV)-CSD from Sk-Hynix and the Los Alamos National

laboratory. Scaleflux proposes CSD 5000, an NVMe SSD with

an online data compression at the write/read operations level.

III. ANALYSIS OF TYPICAL NDP APPLICATIONS

After studying the state of the art regarding NDP, a signifi-

cant part of the evaluation use cases can be roughly classified

in four main categories. The first one is databases, like in [4]

where NewPort is evaluated with MongoDB compared to

SSDs. It reaches a performance of 3.4x faster and 57% less

energy consumption in direct mode. The second category

is Machine Learning/AI. In [5] the SmartSSD is added to

the DeepSpeed ZeRO-Infinity technology, inside the storage

offload of Large Language Models. This work shows an ac-

celeration of up to 1.55x compared to SSDs. The third category

contains all specifics applications such as genetics, radar, etc.

For instance, in [6], the use of the UPMEM-PIM device results

in a speed-up up to 157 for genetic mapping compared to a

CPU+SSD system. The last category encompasses benchmarks

used to evaluate some specific characteristics of a NDP device.

These are not related to real world applications. For example,

[3] characterizes some properties of UPMEM-PIM such as its

compute throughput and memory bandwidth.

From the above studies, NDP is interesting to improve

performances and energy efficiency on suitable applications,

but it requires to rethink the way the application is designed.

For example, applications that process large amounts of data

(e.g. neural networks training, databases, etc.) increase the

movements between the levels of the memory hierarchy.

Typically, memory-bound applications are good candidates

for PiM devices, whereas storage-bound applications can

benefit from the CSx approach. The characteristics of the ap-

plications (e.g. operations, algorithm, data types and formats,

access patterns, etc.), have also an impact on the choice of the

NDP device. For example, UPMEM-PIM does not have native

floating point operators contrary to AiM, but it can handle

more application domains. Another example is the SmartSSD

which is not optimized for small transfers due to the internal

PCIe link. However, software optimisation techniques (at

the application or system level) can be used to improve or

enable the implementation on available hardware. Quantization

or compression techniques like the CSR data format or the

top-k approach are good examples of such optimisations.

IV. CONCLUSION AND PERSPECTIVES

This paper proposes to explore the use of NDP paradigm in

far-edge applications. A first analysis of related devices and

applications benefiting from them, shows some key character-

istics that were considered for introducing NDP approach in

the state-of-the-art use cases. Generalizing data-centric profil-

ing and software optimisation techniques can be interesting to

efficiently exploit NDP in real world applications.

REFERENCES

[1] A. Boroumand et al., “Google workloads for consumer
devices: Mitigating data movement bottlenecks,” SIGPLAN Not.,
vol. 53, no. 2, p. 316–331, Mar. 2018. [Online]. Available:
https://doi.org/10.1145/3296957.3173177

[2] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in 2014 IEEE International Solid-State Circuits Conference Digest

of Technical Papers, 2014, pp. 10–14.
[3] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira, and

O. Mutlu, “Benchmarking a New Paradigm: Experimental Analysis and
Characterization of a Real Processing-in-Memory System,” IEEE Access,
vol. 10, pp. 52 565–52 608, 2022.

[4] A. HeydariGorji, S. Rezaei, M. Torabzadehkashi, H. Bobarshad,
V. Alves, and P. H. Chou, “Leveraging Computational Storage for
Power-Efficient Distributed Data Analytics,” ACM Trans. Embed.

Comput. Syst., vol. 21, no. 6, Oct. 2022, place: New York, NY, USA
Publisher: Association for Computing Machinery. [Online]. Available:
https://doi.org/10.1145/3528577

[5] H. Jang, J. Song, J. Jung, J. Park, Y. Kim, and J. Lee, “Smart-Infinity: Fast
Large Language Model Training using Near-Storage Processing on a Real
System,” in 2024 IEEE International Symposium on High-Performance

Computer Architecture, Mar. 2024, pp. 345–360, iSSN: 2378-203X.
[6] D. Lavenier, C. Deltel, D. Furodet, and J.-F. Roy, “MAPPING on

UPMEM,” INRIA, Research Report RR-8923, Jun. 2016. [Online].
Available: https://hal.science/hal-01327511

Design-Technology Co-Optimization Methodologies

for a FeMFET Bitcell

Rosario Pronsato∗, Ian O’Connor∗, Pascal Vivet†

∗CNRS, INSA Lyon, Ecole Centrale de Lyon, Universite Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69130

Ecully, France, CEA, List, F-38000 Grenoble, France
†LIST/DSCIN, CEA, Grenoble, France {firstname.lastname}@ec-lyon.fr, pascal.vivet@cea.fr

Abstract—Semiconductor technologies for computing hard-
ware are made to pursue performance scaling through disag-
gregation (chiplets) of accelerator-rich architectures employing
advanced paradigms such as approximate, vector and stochastic
computing, as well as diversified integration of non-volatile
memory, advanced 3D transistors, photonic and RF interconnect.
The dimensionality of design space for computing hardware, from
data centers to edge computing devices, is growing exponentially
at a time when technology orientation is critical. To explore
this vast design space, co-optimization techniques covering tech-
nology, circuits and systems and integrating the entire design
value chain from technology models to application benchmarking
are necessary. Such approaches require circuit and architecture
design/synthesis and simulation tools, manufacturing process
data, software aspects, compilers. The main objective of this work
will be to enable the projection of technological developments
of single emerging nanodevices on the design and performance
of complex circuits and architectures for advanced applications.
The work will initially be focused on the design and use of
emerging non-volatile memory circuits in in-memory computing
architectures for tensor processing and artificial intelligence
hardware.

Index Terms—Co-optimization, Emerging Technologies, Non-
volatile Memories

I. INTRODUCTION

Common memory technologies used in traditional mem-

ory hierarchy are constrained by two main factors, latency

and power. This represents a major bottleneck to improving

performance as well as energy-efficiency in memory access

dominated applications [1].

For these reasons present in processor-centric architectures,

conventional computing systems cannot provide the required

performance for modern devices and applications.

Alternatives being explored are memory-centric architec-

tures. In this paradigm, some computational tasks are redi-

rected into specialized memory units that are capable of

processing data [2]. There are two main groups within these

architectures: “Near-Memory computing” and “In-Memory

computing”. The former reduces the distance between the

computing and the memory units, and the latter integrates

processing in the memory unit, both thereby reducing the

memory access time.

Emerging technologies for memory-centric computing -such

as RRAM, Phase-Change Materials, FeMFET, among others-

unlock new design opportunities, but introduce new parameters

that lead to more complex trade-offs for the designer. Thus,

it is necessary to employ co-optimization techniques that

tackle technology, circuit and systems, integrating the entire

design value chain from technology models to application

benchmarking.

There is a wide range of such memory technologies emerg-

ing with a corresponding variety of benefits and drawbacks.

This work will be focused firstly on FeMFETs, proposing a

proper co-design and optimization at the bitcell level to then

extend the approach to set of emerging technologies.

Recent work [3] highlight the capability of co-optimizing a

full memory circuit, but this does not focus on the framework

involved. Other studies related to iMC presents a system-level

methodology to leverage the mapping efficiency [4] or the

customizability of the architecture for better exploration [5].

In this work, we introduce the following contributions:

• a simulator-agnostic optimization framework that inte-

grates heuristic algorithms with SPICE-like simulations,

ensuring broad compatibility across different circuit de-

sign environments

• a case study of a 1T1C FeMFET bitcell with perfor-

mance, power and area considerations at circuit level

II. FEMFET BASED MEMORY: DEVICE DESIGN AND

ANALYSIS

A. Device and Compact Model

In this section we briefly present the FeMFET device to

then explain the subsequent stages of this project.

A FeMFET is designed by adding a ferroelectric (FE) layer

to the gate stack of a MOSFET transistor as shown in Figure

1. The features of the ferroelectric material allow the device

to have a non-volatile behaviour [6]. A sufficiently thick FE

layer will give a low ratio of ferroelectric capacitance to gate

dielectric capacitance. This way, the polarization of the FE

layer can be retained, leading to a hysteric characterization of

the output voltage as a function of the input voltage [7]. The

application of a positive gate-to-source voltage (VGS) beyond

a threshold switches the polarization of the FE in the positive

direction and the withdrawal of the said voltage does not

affect the positive polarization achieved. On the same way,

a sufficiently negative voltage VGS changes the state of the

FE material and it is retained after the voltage goes back to

zero.

Fig. 1. (a) FeFET structure. (b) FeMFET bitcell. (c) 2x2 memory array.

B. Design Technology Co-Optimization

Evolutionary algorithms have been used in research for

decades. In principle, they are a stochastic search procedure

with a population-based approach. This methodology has

copied the biological mechanism of evolution, which means

that it gathers its best population members, then mutates and

recombines them from generation to generation to find an

optimal design or until a certain criterion is met within specific

constraints [8].

To perform co-optimization of the bitcell we used evolution-

ary optimization algorithms. The exploration of the FeMFET

bitcell is formulated as a multi-objective optimization problem,

due to the need to study different KPIs to be minimized or

maximized.

The optimization problem is made up of three parts: the

definition of the variables in the design space, the objective

functions, and the constraints. For our application, the vari-

ables in the design are shown in Table I.

TABLE I
DESIGN VARIABLES FOR OPTIMIZATION

Unit
Boundaries

G01 G02
Min Max Min Max

Geometric
Parameters

Length m 130n – 500n –
Width m 130n – 800n –

area ratio – 0.01 1 0.01 1

Operating
conditions

Programming
voltage

V 4 4

Reading
voltage

V 250m 250m

The Pareto-optimal solutions were generated using the Non-

dominated Sorting Genetic Algorithm-II (NSGA-II), with 100

generations, a population size of 50, and 20 offspring per

generation.

Figure 2(b) shows the Pareto front obtained from NSGA-II.

It illustrates the tradeoff between maximizing the ILV T /IHV T

ratio and minimizing the write energy (Ew). As intended,

the optimization would have been expected to rely mainly

on the width of the transistor, the ferroelectric layer causing

a more complex design space to work with. Opening more

room for improvement with Ar ranging between 2 to 12%.

Additionally, sub-figures (c-d) represent the evolution of the

best measured KPI of the generation. A high growth rate is

observed between the first ten epochs but the one KPI reaching

its maximum does not induce a straight extraction of the Pareto

(a) Design space (b) Objective space

(c) Evolution of ILVT/IHVT (d) Evolution of EW

Fig. 2. 2-objectives optimization between ILV T /IHV T and Ew varying L,
W , and Ar .

front. Thus, solutions below the front are infeasible, while

those above are suboptimal. This frontier being ideal and the

one obtained experimentally resulting from the best elements

of the population, it is necessary to run multiple epochs to

converge to it. Break conditions offer the ability to stop the

algorithm when no improvement is provided after a while.

ACKNOWLEDGMENT

This work is founded by France 2030, in the context of the

ANR PEPR électronique CHOOSE.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” SIGARCH Comput. Archit. News, vol. 23, p. 20–24, mar
1995.

[2] H. A. D. Nguyen, J. Yu, M. A. Lebdeh, M. Taouil, S. Hamdioui, and
F. Catthoor, “A classification of memory-centric computing,” vol. 16, jan
2020.

[3] F. Garcı́a-Redondo, L. Verschueren, S. Rao, P. Pandey, D. Abdi, P. Weckx,
S. Couet, M. Garcı́a-Bardon, and G. Hellings, “A novel dtco-driven
1t1r bitcell for sub-10ns stt-mram llc macros at n12 node,” in 2024

IEEE European Solid-State Electronics Research Conference (ESSERC),
pp. 665–668, 2024.

[4] K. Mishty and M. Sadi, “System and design technology co-optimization
of sot-mram for high-performance ai accelerator memory system,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 43, no. 4, pp. 1065–1078, 2024.
[5] Y. Cai, Y. Gao, Z. Wang, L. Bao, L. Liang, Q. Zheng, C. Wang,

and R. Huang, “Device-architecture co-optimization for rram-based in-
memory computing,” in 2023 IEEE 15th International Conference on

ASIC (ASICON), pp. 1–4, 2023.
[6] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric nega-

tive capacitance mosfet: Capacitance tuning antiferroelectric operation,”
in 2011 International Electron Devices Meeting, pp. 11.3.1–11.3.4, 2011.

[7] X. Yin, A. Aziz, J. Nahas, S. Datta, S. Gupta, M. Niemier, and X. S. Hu,
“Exploiting ferroelectric fets for low-power non-volatile logic-in-memory
circuits,” in 2016 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), p. 1–8, IEEE Press, 2016.
[8] T. Bartz-Beielstein, J. Branke, J. Mehnen, and O. Mersmann, “Evolution-

ary algorithms,” WIREs Data Mining and Knowledge Discovery, vol. 4,
p. 178–195, Apr. 2014.

Un générateur de LFSR VHDL en sources ouvertes
Samuel Garcia 1

1
Cedric - Laetita

CNAM

Paris, France

Résumé—Les méthodologies de développement d’architecture
électronique matérielle se heurtent à l’impossibilité du compro-
mis performance/temps de développement. En effet, le recours à
une architecture matérielle est le plus souvent dicté précisément
par une forte contrainte de performance. Notre approche est
de proposer des outils de génération de code VHDL permettant
de rester sur une modélisation bas niveau avec un fort potentiel
d’optimisation tout en s’appuyant sur un langage de scripte pour
faciliter le développement du code et éviter d’avoir à réécrire des
codes similaires à chaque projet pour quelques paramètres de
différences. Nous présentons ici un tel générateur de code pour
des architectures de génération de nombres pseudo-aléatoires de
type LFSR.

Index Terms—LFSR, random number generator, VHDL code
generator, HDL methodology

I. INTRODUCTION

Le développement d’applications logicielles moderne repose
majoritairement non pas sur la mise en œuvre algorithmique de
concepts mathématiques avec des langages de programmation
optimisés pour la performance, mais sur de petits scripts dont
le rôle est d’assembler des briques logicielles préfabriquées.
La récente tendance du "no code" propose même d’aller encore
un pas plus loin dans cette direction. Le but n’est pas ici de
produire le logiciel le plus performant, mais de répondre de
façon rapide et efficace à une demande applicative.

De nombreuses solutions en termes de méthodologie et
de logiciel de conception associés ont vu le jour dans les
vingt dernières années pour donner au développement matériel
une trajectoire similaire. Les plus notables sont la mise en
place de bases de données de composants dits "sur étagère"
et les produits de synthèse de haut niveau. Mais la pratique
courante du développeur matériel moyen ne semble pas avoir
été massivement influencée par ces propositions.

Pour comprendre pourquoi, il faut se rappeler pourquoi on a
recours au développement d’architecture numérique matérielle
sur mesure. Dans la très grande majorité des cas, c’est une
contrainte de performance qui appelle cette approche. L’état
d’esprit qui consiste à troquer de la performance pure contre
de l’efficacité de développement est donc de facto beaucoup
moins pertinent que dans le cas de développement d’applica-
tions logicielles.

D’un autre côté, la principale raison évoquée pour le
non-recours à un développement matériel est précisément le
manque d’efficacité du développement. Cela plaide pour la
recherche de nouvelles méthodologies et/ou de nouveaux outils
permettant l’amélioration de l’efficacité du développement

matériel tout en représentant un compromis moins défavorable
sur le plan des performances.

Pour répondre à cela, nous proposons des solutions basées
sur des générateurs de code [2], [3]. L’idée centrale est
de conserver au centre de la méthodologie l’utilisation de
langages de description matériel bas niveau (e.g. : VHDL,
Verilog, . . .) qui permettent une maitrise fine sur l’architecture
et donc un fort degré d’optimisation, mais d’automatiser une
partie plus ou moins significative de la production de ce code
final à travers des scrips de génération de code utilisant des
langages de scripte spécialement adaptés à la manipulation de
texte (e.g. : TCL, Python, . . .).

Dans cet article, nous présentons un tel générateur de code
spécialisé dans la génération de code VHDL de générateurs
de nombres aléatoires de type LFSR.

II. LFSR

1 11 1314 16

FIGURE 1. Architecture d’un LFSR dans sa version dite "Fibonacci"

De plus en plus d’applications requièrent l’utilisation d’un
générateur de nombres aléatoires. Les LFSR représentent une
méthode simple de génération de nombres aléatoires. Leur
mise en œuvre est simple tant en logiciel qu’en matériel.
S’ils sont loin de constituer des générateurs aléatoires parfaits,
ils sont suffisamment bons pour la plupart des applications à
l’exclusion des applications de cryptographie.

Les LFSR 1 [1] présentent plusieurs avantages, notamment
leur simplicité matérielle, leur rapidité d’exécution et leur
faible coût en ressources, ce qui les rend particulièrement
adaptés aux applications embarquées et temps réel. Toutefois,
en raison de leur nature déterministe et linéaire, ils peuvent
présenter des vulnérabilités dans des contextes nécessitant
un haut niveau de sécurité, comme le chiffrement de don-
nées sensibles. Pour pallier ces limites, des variantes plus
complexes ou hybrides, combinant plusieurs LFSR ou les
intégrant à des structures non linéaires, ont été proposées.
Malgré ces déficits, les LFSR demeurent un outil fondamental

1. LFSR : Linear Feedback Shift Register ou registres à décalage à
rétroaction linéaire

dans l’étude et la mise en œuvre de générateurs pseudo-
aléatoires. Si un aléa plus poussé est nécessaire, un LFSR est
fréquemment utilisé comme brouilleur pour améliorer encore
la diversité d’un générateur physique. On a atteint alors un
degré d’aléa suffisant pour les applications de cryptographie
les plus critiques.

Les LFSR sont en cela une brique quasiment incontour-
nable, et souvent suffisante, pour la génération de nombres
aléatoires dans un circuit numérique.

La figure 1 montre l’architecture d’un LFSR. On y voit un
registre à décalage circulaire dont la rétroaction provient de
la combinaison de plusieurs bits de l’état courant à travers
des opérateurs XOR. La séquence de nombres produite est
périodique. Le choix de ces bits de rétroaction, qu’on appelle
"taps", détermine la périodicité de la séquence. Plus la période
est longue, meilleure est la qualité de l’aléa. Le choix des taps
est donc un facteur déterminant pour la qualité du générateur
aléatoire obtenue.

L’optimisation de ce choix a été longuement étudiée, et
l’on trouve des tables [4] donnant, pour chaque longueur
du registre à décalage, les taps à choisir pour maximiser la
périodicité de la séquence. Le calcul de ces tables repose sur
un algorithme non trivial, rendant très difficile l’intégration
de ce calcul dans une description VHDL générique. C’est
pourquoi l’utilisation d’un générateur de code qui va pouvoir
facilement lire cette table dans un fichier fourni semble une
approche plus pertinente.

III. LE GÉNÉRATEUR DE CODE

Le générateur de code proposé ici prend la forme d’un script
Python appelé lfsrGen.py qui offre une interface utilisateur de
type CLI typique des applications POSIX.

La page MAN de lfsrGen est donnée ci-dessous :

usage : lfsrGen [-h] [-n N] [-t TYPE]

VHDL Linear Feedback Shift Register

architecture generator for maximum

cycle pseudo-random scrambler

options :

-h, --help show this help message and exit.

-n N number of flip-flops in the

register, default is 8

-t TYPE, TYPE set the number of taps in

--type the lfsr, can be lfsr2 or lfsr4,

default is lfsr2

Le choix des taps repose sur une table issue de [4] sous la
forme d’un fichier CSV. Le fichier de table fourni contient les
taps optimaux pour des LFSR de tailles de 2 à 256 pour une
rétroaction à 2 ou 4 taps (selon les tailles, l’un ou l’autre peut
ne pas exister). Cette table pourra être étendue si besoin.

Pour certaines tailles de registre, plusieurs jeux de taps
offrent une périodicité similaire et maximale. Le but étant la
recherche d’efficacité de développement, demander au déve-
loppeur de faire un choix supplémentaire alors que cela n’aura
pas d’impact significatif sur l’application ne semblait pas aller
dans le bon sens. Il a donc été choisi de n’inclure qu’un seul

jeu de taps par taille de registre et par type (2 ou 4 taps),
choisi de manière purement arbitraire.

Il existe deux architecture classiques permetant la mise en
oeuvre d’un LFSR, la méthode dite "Fibonacci" et la méthode
dite "Galois". La version actuel du générateur repose sur la
méthode Fibonacci.

Le scripte lfsrGen ainsi que la table des taps est mis à
disposition de la communauté sous licence libre sur la plate-
forme Renater Sourcesup à l’adresse suivante : https ://sour-
cesup.renater.fr/projects/lfsrgen [5].

IV. RÉSULTAT DE MISE EN ŒUVRE

Comme exemple d’usage, nous avons généré un LFSR de
taille 10 bits à 4 taps. La commande exécutée est la suivante :

./lfsrGen -n 10 -t lfsr4

Cela produit le fichier "lfsr_10bits_4taps.vhd" qui contient
la description du générateur aléatoire choisi et qui pourra être
intégré dans n’importe quel projet VHDL.

La figure 2

1

D Q

2

D Q

3

D Q

4

D Q

5

D Q

6

D Q

7 9

D DQ Q

8 10

D DQ Q Y

CLK

FIGURE 2. Architecture d’un LFSR 10 bits à 4 taps

Ce fichier a été mis en œuvre et testé avec succès sur un
FPGA XC7Z020.

V. CONCLUSION

Nous avons présenté un outil open source permettant la
génération de code VHDL de générateurs de nombres pseudo-
aléatoires de type LFSR. Il utilise une table des taps qui
maximise la diversité et la périodicité de la séquence gé-
nérée de 2 à 256 bits. Cet outil sera utile à quiconque a
besoin de mettre en œuvre un générateur de nombres pseudo-
aléatoires en VHDL. Les futures évolutions envisagées pour
cet outil sont l’extension de la table pour des longueurs de
registre jusqu’à 1024 et l’ajout d’une option pour générer
une architecture de type "Galois". Une refonte est également
envisagée pour utiliser le framework python vhdlGen en cours
de développement.

RÉFÉRENCES

[1] W.G. Chambers, "Clock-controlled shift registers in binary sequence
generators", Computers and Digital Techniques, IEE Proceedings janvier
1988, p. 17-24.

[2] Garcia S., "Méthodologie de description matérielle d’ordre supérieur"
2019 - Colloque du GDR SoC2 2019

[3] Samuel Garcia, Ming-jun ZHANG, "Higher order HDL applied to
MLP neural network hardware implementation" 2024 - 6th International
Conference on Multidisciplinary Design Optimization & Applications
(MDOA2024)

[4] Roy Ward, Timothy C.A. Molteno, "Table of Linear Feedback Shift
Registers" 2012 – TECHNICAL REPORTS No. 2012-1 from the
ELECTRONICS GROUP at the UNIVERSITY of OTAGO

[5] Dépôt du projet et des sources https ://source-
sup.renater.fr/projects/lfsrgen

FeMFET-Based Accelerator Design for iMC

Antoine Cauquil∗, Damien Deleruyelle∗, Ian O’Connor∗

∗Ecole Centrale de Lyon, INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, CPE Lyon, INL,

UMR5270, 69130 Ecully, France

Abstract—Non-volatile in-memory computing (iMC) has
emerged as an energy-efficient paradigm well suited to AI
workloads. Its implementation using 1T1C FeMFETs (Fer-
roelectric Memory Field Effect Transistors), a best-in-class
emerging non-volatile memory technology that integrates
BEOL ferroelectric devices with FEOL transistors, is of
particular interest. This interest stems from their potential
to enable large-scale multiply-accumulate (MAC) operations
in both digital and analog domains targeting PTOPS/W
efficiency.

Index Terms—Ferroelectric, FeMFET, Bitcell, in-Memory-
Computing, Design Space Exploration

I. INTRODUCTION

The rapid adoption of AI-driven applications, particu-

larly large language models (LLMs) and edge AI, demands

unprecedented computational power to handle increasingly

complex models. However, physical miniaturization limits

and the Von Neumann bottleneck create critical challenges.

Shrinking transistor sizes faces fundamental physical bar-

riers, limiting traditional hardware scaling for both data-

center LLMs and resource-constrained edge devices. Edge

devices further struggle with thermal and power budgets,

making conventional architectures inefficient for deploying

billion-parameter models. Additionally, LLM inference re-

quires moving vast amounts of data between memory and

processors, consuming a significant portion of the energy

due to redundant data transfers. For edge AI, this bottleneck

exacerbates latency and power inefficiencies, hindering

real-time applications such as autonomous robotics or on-

device generative AI. To address these limitations, de-

signers must explore innovative computing paradigms and

leverage emerging technologies - such as ferroelectric ma-

terials - to fundamentally rearchitect AI hardware. Trends

[1] show a shift to memory-centric specialized processing

units, leveraging performances with data reuse and avoid-

ing energy consuming fetch instructions [2]. Also known

as the in-Memory Computing (iMC) paradigm, its goal is

to use memory arrays to limit data movement and process

multiple operations in parallel (multiply, accumulate and

ReLU), based on its content and external stimulus.

This paper is structured as follows. In section II, we give

an overview of ferroelectric materials and their capability

for iMC. In section III, we describe the case study of a

1T1C FeMFET crossbar array and the challenges we face.

II. FERROELECTRIC BITCELLS

This part briefly introduces ferroelectric materials and

discuss about different approach that can yield higher

efficiency for AI inference.

Ferroelectric materials present compelling advantages

for iMC by introducing non-volatility to conventional

CMOS technologies. These materials exhibit a characteris-

tic hysteretic polarization-field response. This study focuses

P-SUB

N+

SiO2

N+

BEOL

G
a
te

D
ra
in

S
o
u
rc
e

metalic layers FEOL

Mx

My

HZO

P-SUB

PolySi

N+

M
HZO

(a) FeMFET cross section (b) FeMFET layout

Fig. 1: FeMFET technology representation

on ferroelectric capacitors (FeCAPs) integrated in the back-

end-of-line (BEOL), which retain polarization after voltage

removal. By directly connecting the FeCAP to a MOSFET

gate in a 1T1C FeMFET configuration as seen in figure 1,

the remnant polarization modulates channel charge distri-

bution, translating the material’s hysteretic response into a

shift of threshold voltage.

Fig. 2: Zoo of bitcells

FeFET technology unveiled new Content Addressable

Memory architectures (fig.2a) with its NV capability that

reduces the density of such circuits as low as 2T2C circuits.

Although, its writing and reading can go beyond binary ap-

proach with analog programming of the Fecap. This Multi-

Level Cell (MLC) behavior also reduces the density of

search circuits by lowering the number of devices required.

Nonetheless, it comes with higher constraints on accuracy

as memory windows are smaller and more sensitive to noise

or process variations. In term of AI inference, a circuit

consisting of 2T2C has been demonstrated efficient [3] in

the context of few shots learning and pattern recognition.

From a binary perspective, it is possible to replicate

conventional logic circuits [4] [5] with a lower area. The

Non-Volatility brought by the ferroelectric material can be

used to store operands that will be applied to an input

vector avoiding fetch that are the main source of energy

consumption [2]. The figure 2b draw an example with a

XNOR logic cell. On a wider scope 2TnC structures exists

where you can operate AND and OR operations in parallel

[6]. Outside of these approaches, some architecture based

on crossbar array of 1T1C FeMFET bitcell can execute

vector and matrix multiplication in one clock cycle [7].

III. NEUROMORPHIC ARCHITECTURE

In this part we will focus on the FeMFET and its

programming challenge.

A. FeMFET crossbar array principle

Many bitcells can be organized within an array to act

as a complete memory. Sharing the same drain and source

by column; and gate by row, (see figure 3) it is possible

to control them individually. To write data, a programming

voltage (±Vprog) is applied on the row while the column

signals are grounded to avoid drain-source conduction. For

the reading part, a reading voltage (VRds
) is applied on

a row while a small differential voltage is applied on the

target column. With this principle, it is possible to process

vector multiplication in one cycle between an input vector

and the content of the array. The results are sensed as

current per column.

Fig. 3: Programming scheme for FeMFET crossbar array

B. The programming challenge

Reference [8] highlights that the writing scheme pre-

sented in the previous section is not suitable for large

arrays. In fact, when programming, the devices located in

the half selected rows or columns, they see their values

partially erased if not totally . Therefore, it can tear

down the use of such approach for iMC. However, [8]

proposes an approaches that mitigates these issues by

applying half the programming voltage on the unselected

rows and columns while programming. Nonetheless, ex-

periments conducted in simulation with STMicroelectronic

130nm high speed CMOS technology and preisach based

FeCAP [9] fitted with processed values from CEA-LETI

still showcased disturb in the whole array. Initial FeMFET

devices programmed with a remnant FeCAP polarity of -

600mV (1) to -400mV for the fully unselected ones, (2) to

+75mV for the half selected row, (3) to +250mV for the

half selected column and (4) to +910mV for the targeted

device to program. The variation of these voltages, shift

the threshold voltage of the devices impacting the linearity

of the MAC operations that are processed.

IV. CONCLUSION

To fully address the programming issue that limits the

scaling of the array for iMC application, future work will

focus on exploring different programming scheme and

optimizing them for best comparison. Prior concern will

target solutions that offer reduced layout for the tiling and

the footprint of the bitcells, which is the main advantage

of the crossbar architecture. Other key performance in-

dicators that will be used for optimization are linked to

memory capability (endurance, retention time, peripheral

circuit overhead) and computing performance (static power

consumption, latency, cost per operation, linearity).

ACKNOWLEDGMENT

We would like to express our sincere gratitude to CEA-

LETI for providing real case values of ferroelectric capac-

itor. We also want to acknowledge Ferro4EdgeAI projects.

REFERENCES

[1] B. Murmann, “Mixed-signal computing for deep neural network
inference,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 29, no. 1, pp. 3–13, 2021.
[2] A. Pedram, S. Richardson, M. Horowitz, S. Galal, and S. Kvatinsky,

“Dark memory and accelerator-rich system optimization in the dark
silicon era,” IEEE Design Test, vol. 34, no. 2, pp. 39–50, 2017.

[3] X. Liu, K. Katti, Y. He, P. Jacob, C. Richter, U. Schroeder,
S. Kurinec, P. Chaudhari, and D. Jariwala, “Analog
content-addressable memory from complementary fefets,”
Device, vol. 2, no. 2, p. 100218, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2666998623003587

[4] I. O’Connor et al, “Library of optimized vnwfet-based logic cells, a
eu deliverable.” [Online]. Available: D4.01 FVLLMONTI P3-ECL-
INL-20230831

[5] E. T. Breyer, H. Mulaosmanovic, T. Mikolajick, and S. Slesazeck,
“Reconfigurable nand/nor logic gates in 28 nm hkmg and 22 nm fd-
soi fefet technology,” in 2017 IEEE International Electron Devices

Meeting (IEDM), 2017, pp. 28.5.1–28.5.4.
[6] Y. Xiao, Y. Xu, S. Deng, Z. Zhao, S. George, K. Ni, and

V. Narayanan, “A compact ferroelectric 2t-(n+1)c cell to implement
and-or logic in memory,” in 2023 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), 2023, pp. 1–6.
[7] S. De, F. Müller, N. Laleni, M. Lederer, Y. Raffel, S. Mojumder,

A. Vardar, S. Abdulazhanov, T. Ali, S. Dünkel, S. Beyer, K. Seidel,
and T. Kämpfe, “Demonstration of multiply-accumulate operation
with 28 nm fefet crossbar array,” IEEE Electron Device Letters,
vol. 43, no. 12, pp. 2081–2084, 2022.

[8] Z. Jiang, Z. Zhao, S. Deng, Y. Xiao, Y. Xu, H. Mulaosmanovic,
S. Duenkel, S. Beyer, S. Meninger, M. Mohamed, R. Joshi, X. Gong,
S. Kurinec, V. Narayanan, and K. Ni, “On the feasibility of 1t
ferroelectric fet memory array,” IEEE Transactions on Electron

Devices, vol. 69, no. 12, pp. 6722–6730, 2022.
[9] B. Jiang, Zurcher, Jones, Gillespie, and Lee, “Computationally ef-

ficient ferroelectric capacitor model for circuit simulation,” in 1997

Symposium on VLSI Technology, 1997, pp. 141–142.

Compression ANS pour des réseaux de neurones

Olivier Romane, Olivier Muller, Adrien Prost-Boucle, Frédéric Pétrot
Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France

Abstract—Les réseaux de neurones artificiels posent des
problèmes de performance lors de la phase d’inférence où le
temps et l’énergie du calcul sont dominés par les accès aux
mémoire externes. Nous proposons ici de réduire la quantité
de données accédée en intégrant une étape de compression
entropique lors des lectures mémoires. Nous étudions l’impact
matériel des décompresseurs et montrons qu’il existe différents
compromis architecturaux impactant le ratio de compression
atteignable.

Index Terms—compression de données, réseaux de neurones

I. INTRODUCTION

Les réseaux de neurones sont omniprésents dans le monde

actuel, avec des réseaux comptant de plus en plus de

paramètres notamment depuis l’avènement des LLMs (405

milliards de paramètres pour Llama3 [3] contre 25 millions

pour Resnet50 [5]). Il devient donc nécessaire de construire

du matériel adapté pour pouvoir réaliser l’entraı̂nement et

l’inférence de ces réseaux de façon efficace. La littérature

a montré que les accès aux mémoires externes dominent

le coût temporel et énergétique lors de l’exécution d’un

réseau de neurones [4]. Ainsi, nous proposons d’exploiter

la répartition inégale des poids des réseaux de neurones

quantifiés pour appliquer une étape de compression entropique.

Cela d’augmenter la quantité de données accédées à chaque

lecture mémoire au prix d’une latence plus élevée due au

calculs nécessaires pour la décompression.

Fig. 1. Histogramme représentant la répartition des poids de la dernière
couche de convolution d’un Resnet18 quantifié en 4 bits

*Institut National Polytechnique Grenoble Alpes

II. CHOIX DE L’ALGORITHME DE COMPRESSION

Il est important de choisir une méthode de compression en-

tropique qui admet à la fois une implantation matérielle simple

tout en permettant de maximiser le ratio de compression des

paramètres des réseaux. Une étude statistique de la répartition

des poids de plusieurs réseaux de neurones denses quantifiés

avec différentes méthodes de quantification montre que les

poids sont fortement biaisés (Fig. 1).

L’algorithme de Huffman [6] admet une implantation

matérielle raisonnable mais souffre d’un ratio de compression

peu efficace pour les distributions de probabilité fortement

déséquilibrées observées. De l’autre côté du spectre, le codage

arithmétique [7] [9] fourni un ratio de compression efficace

pour toute distribution de probabilité mais est coûteux pour

une implantation matérielle. Un juste milieu pourrait être ANS

[1] [2], et en particulier sa version tabulée tANS car il

combine une complexité d’implantation raisonnable avec un

ratio de compression efficace quelle que soit la distribution de

probabilité de l’alphabet d’entrée.

Fig. 2. Décompresseur tANS classique, x et y sont des constantes qui
dépendent des paramètres du décompresseur

Fig. 3. Décompresseur tANS simplifié

III. IMPLÉMENTATION ET ÉVALUATION

L’algorithme de décompression de tANS est piloté par

un automate d’états que l’on microcode dans la table

d’états. Les données compressées sont contenues dans le flux

d’entrée. Chaque ligne de la table d’états contient le symbole

décompressé ainsi qu’une partie des bits du prochain état.

Les bits du flux d’entrée contiennent l’autre partie des bits

du prochain état.

L’algorithme de décompression de tANS est paramétré par

le nombre d’états de l’automate et le nombre de symboles

de l’alphabet compressé. Nous avons regroupé ces choix de

paramètres en différentes classes, et on peut voir en Fig.

2, Fig. 3 que certaines classes de paramètres permettent

de simplifier l’implantation du décompresseur. Cependant,

cette simplification peut engendrer une perte sur le ratio de

compression des décompresseurs comme montré dans la table

I.

TABLE I
RATIO DE COMPRESSION (RC) POUR LA DERNIÈRE COUCHE DE

CONVOLUTION DE RÉSEAUX QUANTIFIÉS RESNET18

Quantification 2 bits Quantification 4 bits

RC Théorique 2.15 3.77

RC tANS classique 2.13 3.71

RC tANS simplifié 2.13 3.43

RC Huffman 1.49 2.92

IV. APPLICATION

Ce travail s’inscrit dans le cadre du projet Nnawaq [8], un

accélérateur FPGA pour l’inférence de réseaux de neurones.

L’architecture de Nnawaq est dataflow, c’est-à-dire que tous

les poids du réseau implanté sont dans les mémoires internes

du FPGA. Cela limite fortement la taille des réseaux qu’il

est possible d’accélérer par cette méthode. Par conséquent,

l’ajout de décompresseurs en sortie des mémoires internes du

FPGA devrait permettre l’implantation de réseaux de neurones

contenant plus de paramètres.

V. CONCLUSION

Nous proposons de tirer partie de la répartition biaisée des

poids des réseaux de neurones afin d’appliquer une passe de

compression entropique à l’inférence, ce qui permet de réduire

le nombre d’accès à des mémoires externes tout en offrant une

implantation adaptée à l’architecture ciblée. Différentes im-

plantations de tANS sont utilisées pour permettre d’atteindre

différents compromis en terme d’impact architectural et de

ratio de compression.

REFERENCES

[1] Jarek Duda. Asymmetric numeral systems. CoRR, abs/0902.0271, 2009.

[2] Jarek Duda. Asymmetric numeral systems as close to capacity low state
entropy coders. CoRR, abs/1311.2540, 2013.

[3] Aaron Grattafiori et al. The llama 3 herd of models, 2024.

[4] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both
weights and connections for efficient neural networks. In Proceedings

of the 29th International Conference on Neural Information Processing

Systems - Volume 1, NIPS’15, page 1135–1143, Cambridge, MA, USA,
2015. MIT Press.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[6] David A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[7] R. Pasco. Source coding algorithms for fast data compression (ph.d. thesis
abstr.). IEEE Transactions on Information Theory, 23(4):548–548, 1977.

[8] Adrien Prost-Boucle, Alban Bourge, and Frédéric Pétrot. High-efficiency
convolutional ternary neural networks with custom adder trees and weight
compression. ACM Transactions on Reconfigurable Technology and

Systems (TRETS), 11:1 – 24, 2018.

[9] J. J. Rissanen. Generalized kraft inequality and arithmetic coding. IBM

Journal of Research and Development, 20(3):198–203, 1976.

An Analog MAC Cell in Standard CMOS for

Neural Network Inference
Mohamed BOUCHAKOUR∗†, Emmanuel BERGERET†, Gilles SICARD‡, Kamel ABDELOUAHAB§

and François BERRY∗

∗University Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
†University Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont Auvergne, F-63000 Clermont-Ferrand, France

‡CEA-LETI, F-38000 Grenoble, France
§Sma-RTy, F-63000 Clermont-Ferrand, France

Email: mohamed.bouchakour@uca.fr

Abstract—This article presents a fully analog Multiply-
Accumulate (MAC) cell for neural network inference, imple-
mented in standard CMOS technology. By exploiting the sub-
threshold exponential behavior of PMOS transistors modulated
by the substrate, our design enables two-quadrant multiplication
without the overhead of storing negative weights. The circuit thus
achieves a significant reduction in energy consumption and circuit
complexity while maintaining a high computational throughput.
Simulations in a 65nm CMOS process show an energy con-
sumption as low as 0.95 fJ per MAC operation and a total
consumption of 0.92 pJ for inference on the MNIST dataset,
with a classification rate of 91 %. Comparisons with the state of
the art show notable improvements in energy efficiency.

Index Terms—Analog computing, Multiply-Accumulate, Neu-
ral network inference, Low-power design, CMOS.

I. INTRODUCTION

Multiply–Accumulate (MAC) operations dominate the

computational load in neural networks (NNs), often

accounting for more than 99% of total operations. While

digital implementations allow massive parallelism, they incur

high energy consumption and latency [12].

Analog computing offers a promising alternative, enabling

energy efficiency gains of several orders of magnitude [7].

However, analog designs face challenges such as process–

voltage–temperature (PVT) variations, noise sensitivity, and

the difficulty of storing analog weights. The intrinsic tolerance

of neural networks to noise and approximation, combined

with chip-specific training strategies, helps mitigate these

issues.

Mixed-signal architectures combine analog computing with

digital weight storage, using data reuse to amortize memory

access costs despite frequent analog-to-digital conversions

[10]. Eliminating these conversions through a fully analog

approach promises additional efficiency gains. Although

some designs exist [11], they remain much less common than

mixed-signal architectures.

Several fully analog MAC cell implementations have been

proposed: floating-gate current mirrors using stored charge

This project was funded by the Auvergne-Rhône-Alpes Region.

and pulse-width modulation [9]; deep-well NMOS devices

using simultaneous gate–substrate control [6]; dual-line

schemes for positive/negative weights (doubling storage);

near-memory systems using digital SRAM weights to drive

in-cell DACs [8], [11]; and temporal-domain cells on SOI

sharing back-gate control [8].

Furthermore, the widespread use of ReLU activation

functions, producing non-negative activations [4], makes

two-quadrant multiplication sufficient for most DNN layers,

significantly simplifying hardware. In this work, we introduce

a fully analog two-quadrant MAC cell based on substrate-

modulated PMOS transistors in standard CMOS technology,

removing the need for dedicated negative weight storage,

reducing complexity, power, and area without loss of accuracy.

II. PROPOSED ANALOG MAC CIRCUIT

In standard CMOS, P-type transistors in an N-well allow

independent substrate-bias control. In the subthreshold regime,

the PMOS drain current is given by:

Id = I0 · e
−(1−k)Vbs/VT · e−kVgs/VT · (1− e−Vds/VT) (1)

Neglecting the Early effect and assuming saturation (Vds ≥

4VT), this simplifies to:

Id = I0 · e
−(1−k)Vbs/VT · e−kVgs/VT (2)

This exponential dependence on Vbs and Vgs is exploited to

perform multiplication in our circuit (Fig. 1), which comprises

identical PMOS transistors P1, P2, and P3, and a metal–metal

capacitor Cmem charged via the bit line (BL).

For transistors P1 and P2, we have:

Iin = Id(P1) = I0 · e
−kVgsP1/VT (3)

Iout1 = Id(P2) = I0 · e
−(1−k)Vbs/VT · e−kVgsP2/VT (4)

Assuming VgsP1 = VgsP2, we obtain:

Iout1 = Iin · e−(1−k)Vbs/VT ≡ Iin · e−C·Vbs (5)

Vdd Vdd

Iin Iout1

Vdd

Iout2

BL Vb2

Input Cell MAC Cell

P1 P2 P3
VBS2VBS

Cmem

Fig. 1. Proposed MAC cell

We define the weight w = e−C·Vbs , with w > 0, so:

Iout1 = Iin · w (6)

To support negative weights, a transformation w = a ·w′+b
is applied, yielding:

Iout1 = Iin · a · w′

︸ ︷︷ ︸

Multiplication result

+ Iin · b
︸ ︷︷ ︸

Output bias

(7)

Using a third transistor (P3) and taking the output as the

difference between Iout1 and Iout2, we adjust Vbs2 such that

b = e−C·Vbs2 , canceling the bias:

Iout = Iin · a · w′ (8)

thus achieving two-quadrant multiplication. Placing multiple

cells on the same output lines implements the sum of multiple

products, enabling dot product computations fundamental to

neural network inference.

III. TESTS AND MAIN RESULTS

The MAC cell was simulated in a 65nm CMOS process. A

784×10 MAC network used for MNIST classification achieved

91% accuracy.

The main contributors to power consumption in the system

are the input cell and two computing transistors (P2 and

P3). To maintain sub-threshold operation, the input current

is capped at 1µA, with an average of 0.5µA assumed under

uniform input distribution. With a supply voltage of 0.6V ,

the input cell consumes an average of 0.3µW . However, this

power is amortized over multiple MAC operations—in this

case, distributed across 10 columns, effectively reducing its

per-MAC contribution.

The two computing transistors also operate under similar

assumptions, with an average input current of 0.5µA and a

bias voltage of 0.6V , leading to a combined power consump-

tion of 0.6µW . Since the energy per MAC depends on the

computation time, a duration of 1.5ns results in an energy

usage of 0.95fJ per MAC. This translates to an efficiency

of 2105TOPS/W , considering each MAC comprises two

operations.

Table I compares our solution with the state of the art.

Custom training algorithms are needed to compensate prac-

tical nonidealities such as process variations and mismatch.

TABLE I
COMPARISON OF ANALOG MAC CELLS

Ref. [3] [11] [8] [6] [13] [5] This

work

Tech. (nm) 65 28 22 (FD-

SOI)

180 28 16 65

Type Time

domain,

A.C(1)

Time

domain,

A.C(1)

Time

domain,

A.C(1)

Substrate

modulation(3)
CIM(2) CIM(2) Substrate

modulation(3)

Act. prec. 4/8 A(5) up to 6 4 1/2 1/8 A(5)

Weight prec. 4/8 5 up to 6 4 1/2 1/8 5

Output type S(4) S(4) M(5) M(5) S(4) S(4) M(5)

Eff. (TOPS/W) 102.2 437.9 2989* 47.6 588 121/30 2105

(1) Charge accumulation. (2) Compute-in-memory. (3) Substrate modulation.
(4) Simulation results. (5) Measured results. (6) Analog.

* Calculated from published data.

IV. CONCLUSION

We have designed a fully analog MAC cell in standard

CMOS technology, achieving two-quadrant multiplication via

subthreshold substrate modulation. Eliminating the need for

negative weight storage significantly reduces complexity and

power, achieving an energy efficiency of 2105 TOPS/W while

maintaining 91% accuracy on MNIST. Future work includes

full integration, error compensation, and chip-level validation.

REFERENCES

[1] Ali, M., et al., “IMAC: In-Memory Multi-Bit Multiplication and ACcu-
mulation in 6T SRAM Array,” IEEE Trans. Circuits Syst. I, vol. 67, no.
8, pp. 2521–2531, Aug. 2020.

[2] A. G. Andreou et al., “Current-mode subthreshold MOS circuits for
analog VLSI neural systems,” IEEE Trans. Neural Networks, vol. 2, no.
2, pp. 205–213, Mar. 1991.

[3] Chen, Z., et al., “High-Throughput Dynamic Time Warping Accelera-
tor for Time-Series Classification With Pipelined Mixed-Signal Time-
Domain Computing,” IEEE J. Solid-State Circuits, vol. 56, no. 2, pp.
624–635, Feb. 2021.

[4] Dubey, S.R., Singh, S.K., Chaudhuri, B.B.: Activation functions in deep
learning: A comprehensive survey and benchmark. Neurocomputing.

2022; 503:92–108.
[5] Jia, H., et al., “Scalable and Programmable Neural Network Inference

Accelerator Based on In-Memory Computing,” IEEE J. Solid-State

Circuits, vol. 57, no. 1, pp. 198–211, Jan. 2022.
[6] Kenarangi, F., et al., “A Single-MOSFET Analog High Resolution-

Targeted (SMART) Multiplier for Machine Learning Classification,”
IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 11, no. 4, pp. 816–828,
Dec. 2021.

[7] B. Murmann, “Mixed-Signal Computing for Deep Neural Network
Inference,” IEEE Trans. VLSI Syst., vol. 29, no. 1, pp. 3–13, Jan. 2021.

[8] Nägele, R., et al.: Analog Multiply-Accumulate Cell With Multi-Bit
Resolution for All-Analog AI Inference Accelerators. IEEE Transactions

on Circuits and Systems I: Regular Papers. 2023 Sep; 70(9):3509–21.
[9] Paliy, M., Strangio, S., Ruiu, P., Rizzo, T., Iannaccone, G.: Analog

Vector-Matrix Multiplier Based on Programmable Current Mirrors for
Neural Network Integrated Circuits. IEEE Access. 2020; 8:203525–37.

[10] Sebastian, A., et al., “Memory devices and applications for in-memory
computing,” Nat. Nanotechnol., vol. 15, no. 7, pp. 529–544, Jul. 2020.

[11] Seo, J.O., et al.: A 44.2-TOPS/W CNN Processor With Variation-
Tolerant Analog Datapath and Variation Compensating Circuit. IEEE

Journal of Solid-State Circuits. 2024 May; 59(5):1603–11.
[12] V. Sze, et al., “Efficient Processing of Deep Neural Networks: A Tutorial

and Survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, Dec. 2017.
[13] Zhang, B., et al., “PIMCA: A Programmable In-Memory Computing

Accelerator for Energy-Efficient DNN Inference,” IEEE J. Solid-State

Circuits, vol. 58, no. 5, pp. 1436–1449, May 2023.

Estimation temps réel de pagayage par capteurs de

force

Souébou Bouro1, Mickaël Le Gentil1, Antoine Courtay1, Guillaume Nicolas2, Nicolas Bideau2, Olivier Berder1

1University of Rennes - IRISA, firstname.lastname@irisa.fr
2University of Rennes 2 - M2S, firstname.lastname@univ-rennes2.fr

I. INTRODUCTION

L’analyse de la performance en kayak repose sur la mesure

de paramètres dynamiques tels que la force appliquée sur la

pagaie et la cadence de pagayage, définie comme le nombre

de coups par minute (SPM). Ces indicateurs sont essentiels

pour évaluer l’efficacité du geste et adapter l’entraı̂nement.

Les ergomètres offrent un environnement de mesure contrôlé

[1], [2], mais ne reproduisent que partiellement les conditions

réelles de navigation. L’analyse vidéo 3D [3] permet de suivre

le geste technique avec précision, mais reste peu adaptée aux

conditions extérieures.

La comparaison de la cadence à d’autres métriques, comme

la puissance ou les données d’ergomètre [4], ou un métronome

sonore [5], soulignent l’importance de cette métrique sans

pour autant proposer de solution adaptée à une estimation en

temps réel. Par ailleurs, une approche classique d’estimation

de la cadence basée sur la détection de pics de force serait

sensible aux variations interindividuelles (technique, niveau,

environnement).

Dans ce contexte, nous proposons une approche temps

réel reposant uniquement sur les signaux de force mesurés

sur la pagaie. L’algorithme se repose sur l’identification

de la fréquence fondamentale du signal de force à travers

une fonction d’autocorrélation (ACF) adaptée aux spécificités

du pagayage, intégrée dans un système embarqué léger et

économe en énergie.

II. MÉTHODOLOGIE D’ESTIMATION DE LA CADENCE

Plusieurs approches sont envisageables pour l’estimation

de cette fréquence fondamentale, selon le domaine d’analyse

considéré. Les méthodes fréquentielles (FFT, cepstre, spectre

harmonique) offrent une bonne précision sur les signaux

stationnaires, mais leur coût computationnel élevé et leur

sensibilité au bruit les rendent peu adaptées aux systèmes

embarqués temps réel.

En revanche, les méthodes temporelles sont plus

légères et directement exploitables sur microcontrôleurs.

L’autocorrélation (ACF), l’Average Magnitude Difference

Function (AMDF) et les variantes simplifiées [6], [7] offrent

un bon compromis entre précision, robustesse et efficacité.

L’ACF est adaptée ici à la dynamique spécifique du pagayage,

avec un traitement par fenêtres glissantes, un filtrage léger, et

une détection optimisée du pic principal corrélé à la période

fondamentale.

A. Instrumentation de la pagaie

Le système de mesure développé repose sur deux modules

embarqués (Fig. 1-b) fixés de part et d’autre de la pagaie,

chacun intégrant une jauge de contrainte collée à 65 cm

du centre du manche (Fig 1-a). La déformation mesurée est

convertie en tension à l’aide d’un pont de Wheatstone et

numérisée par un convertisseur analogique-numérique (ADC)

24 bits à 80 Hz, avec suréchantillonnage logiciel à 100 Hz pour

transmission Bluetooth. Une référence externe de 122 mV est

utilisée pour adapter la pleine échelle aux faibles variations de

résistance des jauges (±2 Ω).

Les modules sont compacts (52x28x15 mm, 15 g (<

180g [4])), synchronisés grâce à un horodatage partagé, et

n’affectent pas l’équilibre ou la maniabilité de la pagaie. Les

données sont transmises en temps réel vers une tablette en

Bluetooth pour traitement logiciel.

a

b c

Fig. 1: Instrumentation de la pagaie : a) Pagaie instrumentée,

b) Nœud capteur, c) Ergomètre.

B. Protocole d’évaluation

L’algorithme est conçu pour couvrir une plage de cadence

allant de 30 à 180 SPM. Une première validation est réalisée

à l’aide de signaux sinusoı̈daux simulant différentes cadences

(30 à 180 SPM par pas de 1 SPM), sur des fenêtres glissantes

de 4 secondes avec recouvrement de 3,5 secondes.

Ensuite, des tests sont réalisés sur ergomètre (Fig 1-c)

avec des athlètes à différentes intensités : Faible (LSR, 30-

67 SPM), Modérée (MSR, 68-105 SPM), Élevée (HSR, 106-

143 SPM) et Maximale (XSR, 144-180 SPM). Les données de

notre système (mise à jour chaque 0.5 s) sont comparées aux

données de cadence de l’ergomètre (mise à jour 0.4–0.7 s),

après interpolation linéaire.

Les performances sont évaluées à l’aide du coefficient de

corrélation de Pearson (r), de l’erreur quadratique moyenne

(RMSE).

III. VALIDATION EXPÉRIMENTALE SUR ERGOMÈTRE

La Figure 2 compare l’ACF classique à notre approche

optimisée avec bornes dynamiques. Cette adaptation permet

de limiter le calcul aux décalages pertinents tout en préservant

la précision. Ce traitement est robuste, peu sensible aux

variations individuelles et compatible avec une exécution em-

barquée. L’ajustement dynamique des bornes Kmin, (Kref ,

(Kmax en fonction du taux d’échantillonnage effectif permet

d’optimiser à la fois la précision et l’efficacité computation-

nelle. L’approche est ainsi bien adaptée aux contraintes des

systèmes embarqués sportifs, avec des performances stables

sur une large plage de cadences.

0 50 100 150 200 250 300 350 400
Lag(k)

1.0

0.5

0.0

0.5

1.0

AC
F

Kmin Kref Kmax ACF
ACFC

Fig. 2: Comparaison entre l’ACF classique et notre version

avec ajustements dynamiques (ACFC).

La table I présente la moyenne des résultats des tests sur

ergomètre. Des écarts initiaux de cadence sont observés lors

des premiers coups (1–5), probablement liés à l’accélération

du volant d’inertie, connue pour fausser les mesures de

l’ergomètre [8]. Ces coups ont été exclus de l’analyse. En

effet, On observe une forte corrélation (r entre 0,89 et 0,97)

et des RMSE compris entre 3,26 et 7,40 SPM selon les

plages de cadence. Les écarts les plus importants apparaissent

naturellement aux hautes cadences, à cause d’une baisse de

résolution relative.

TABLE I: Moyennes des résultats de performance pour un

athlète professionnel

Condition Corrélation r RMSE (SPM)

LSR 0,93 3,65
MSR 0,97 3,26
HSR 0,89 7,36
XSR 0,92 7,40

La Figure 3 illustre la dynamique de la force enregistrée

et l’évolution des cadences estimées comparées à celles de

l’ergomètre. Globalement, le système fournit des estimations

précises, stables et compatibles avec les exigences d’analyse

de performance. La méthode se montre robuste sans nécessiter

d’ajustement individuel ni connaissance a priori du niveau

technique.

5 10 15 20 25 30 35
Temps (s)

0

100

200

300

400

500

600

Fo
rc

e
(N

)

Force gauche Force droite Cadence ergomètre Cadence estimée

0

10

20

30

40

50

60

70

80

Ca
de

nc
e

(S
PM

)

Fig. 3: Force mesurée par la pagaie instrumentée et compara-

ison des cadences estimées avec celles de l’ergomètre.

IV. CONCLUSION

Nous avons présenté un système embarqué permettant

d’estimer en temps réel la cadence de pagayage à partir de cap-

teurs de force positionnés sur la pagaie. L’algorithme repose

sur une fonction d’autocorrélation (ACF) adaptée, combinée

à une chaı̂ne de prétraitement légère et optimisée pour un

traitement sur microcontrôleur.

La méthode est robuste, et ne dépend d’aucun paramètre

utilisateur. Les tests sur signaux sinusoı̈daux ont permis de

caractériser la résolution en fonction de la cadence. Les

expérimentations sur ergomètre, menées à différentes ca-

dences, ont confirmé la fiabilité des estimations, avec une forte

corrélation aux données de référence.

Ce système ouvre des perspectives pour l’analyse de la

performance en kayak, en particulier en conditions réelles sur

l’eau. Les travaux futurs viseront à intégrer d’autres capteurs

(orientation, vitesse, force sur le cale-pied).

REFERENCES

[1] M. Begon, F. Colloud, and P. Lacouture, “Measurement of contact forces
on a kayak ergometer with a sliding footrest–seat complex,” Sports

engineering, vol. 11, pp. 67–73, 2009.
[2] P. Bonito, M. Sousa, F. J. Ferreira, J. F. Justo, and B. Gomes, “Magnitude

and shape of the forces applied on the foot rest and paddle by elite
kayakers,” Sensors, vol. 22, no. 4, p. 1612, 2022.

[3] E. Limonta, R. Squadrone, R. Rodano, A. Marzegan, A. Veicsteinas,
G. Merati, and M. Sacchi, “Tridimensional kinematic analysis on a kayak-
ing simulator: key factors to successful performance,” Sport Sciences for

Health, vol. 6, pp. 27–34, 2010.
[4] D. Sturm, K. Yousaf, and M. Eriksson, “A wireless, unobtrusive kayak

sensor network enabling feedback solutions,” in International Conference

on Body Sensor Networks, 2010, pp. 159–163.
[5] B. Gomes, N. V. Ramos, F. A. Conceição, R. H. Sanders, M. A. Vaz,

and J. P. Vilas-Boas, “Paddling force profiles at different stroke rates in
elite sprint kayaking,” Journal of Applied Biomechanics, vol. 31, no. 4,
pp. 258–263, 2015.

[6] L. Rabiner, M. Cheng, A. Rosenberg, and C. McGonegal, “A comparative
performance study of several pitch detection algorithms,” IEEE Transac-

tions on Acoustics, Speech, and Signal Processing, vol. 24, no. 5, pp.
399–418, 1976.

[7] Y.-M. Zeng, Z.-Y. Wu, H.-B. Liu, and L. Zhou, “Modified amdf pitch
detection algorithm,” in International Conference on Machine Learning

and Cybernetics, vol. 1, 2003, pp. 470–473.
[8] G. Treff, L. Mentz, B. Mayer, K. Winkert, T. Engleder, and J. M.

Steinacker, “Initial evaluation of the concept-2 rowing ergometer’s ac-
curacy using a motorized test rig,” Frontiers in Sports and Active Living,
vol. 3, p. 801617, 2022.

Plug, Play, Betray: Edge TPU Under

Man-in-the-Middle Attack

S. O. Niang, J. Lorandel and C. Moy

Univ Rennes, CNRS, IETR UMR 6164, F-35000, Rennes, France

seydina-oumar.niang@univ-rennes.fr

Abstract—AI-based hardware accelerators such as the Coral
USB Accelerator enable the use of AI on the edge nowadays. They
offer many advantages over cloud-based solutions. However, the
lack of encryption and integrity checks in USB communication
raises security concerns, as these accelerators can be used in
critical applications. In this paper, we present a man-in-the-
middle (MITM) attack targeting the USB interface of the Coral
USB Accelerator. Our methodology is based on the Raspberry
Pi 5 and USB Proxy [1], allowing real-time interception and
manipulation, and thus enabling us to successfully demonstrate
the exfiltration of sensitive data (model parameters, input data)
and the corruption of inference results.

Index Terms—Edge TPU, Man-in-the-middle attack, USB se-
curity, Hardware vulnerability, Data exfiltration

I. INTRODUCTION

Nowadays, AI is used in many applications (over 400

specific use cases, according to McKinsey [2]), including

critical fields like healthcare, industry, and finance. Most of

these applications rely on cloud servers to perform the heavy

computations required by deep neural networks (DNNs). Now,

Edge AI-based hardware accelerators (such as Google Edge

TPUs [3]edge tpus) make it possible to bring the power of

AI to embedded systems without relying on cloud servers.

Deploying DNNs on edge devices has many advantages [4],

including low latency, low power consumption, and enhanced

privacy. However, to interface the accelerator with the host

system, the communication interfaces often rely on PCIe and

USB. It has been shown that the neural network models they

run through them were vulnerable to attacks. In particular,

quite a few attacks targeting edge-deployed DNNs have been

published. Isakov et al. [4] proposed a survey that classifies

them based on the attacker’s access level and agenda. On

the other hand, Wu et al. [5] were able to intercept and

manipulate image data transmitted between a USB camera and

a detection system. Considering all these works and the fact

that AI accelerators are used in critical areas, it is essential

to assess their security. Even high-performance buses such as

PCIe can also be the target of hardware attack, allowing direct

access to exchanged data. In [6], a man-in-the-middle (MITM)

attack was demonstrated on the PCIe bus of an iPhone, which

connects the SoC to its NAND flash memory, allowing them

to bypass the lock screen’s password attempt limit. In this

paper, a man-in-the-middle (MITM) attack targeting the USB

This study is partially funded by the ANR within the framework of the PIA
EUR CyberSchool project (ANR-18-EURE-0004).

Fig. 1. USB MitM Attacks on the Coral USB Accelerator

interface of Google’s Coral USB Accelerator is demonstrated.

The proposed approach differs from previous works [5] [7], in

which the MITM attack is performed between the host and the

input device. In this work, the attack is performed between the

host and the Coral USB Accelerator. While previous attacks

were only targeting input data, the proposed approach allows

an attacker to access all data exchanged between the host

and the accelerator, including input, model parameters, and

inference results, making possible a large panel of attacks.

II. MITM ATTACK ON USB COMMUNICATION BUS

A. Threat model

In our threat model, the following assumptions are made:

the Coral USB Accelerator is used in an image classification

application; the attacker has physical access to the USB cable

connecting the host and the accelerator and can insert a

malicious device between the Coral USB Accelerator and the

host; neither the host nor the accelerator is compromised or

damaged; and there is no encryption or integrity check on the

USB traffic.

B. Methodology

Most AI computation is all about tensor calculations, and

the Edge-Tensor Processing Unit (TPU), the main component

of the Coral USB Accelerator, is specially designed to accel-

erate these operations. It is a custom ASIC that employs a

systolic array of processing elements (PEs) organized into a

2D grid. The Coral USB Accelerator is designed to be used as

a coprocessor. That’s why it is always used in conjunction with

a host system through a USB interface. Our approach (Figure

1) consists of using a Raspberry Pi 5 with USB Proxy, an

open-source software project that supports USB proxying with

options to perform MITM attacks, to gain full control over the

USB traffic between the host and the Coral USB Accelerator.

In the literature, hardware platforms used to perform MITM

attacks, even outside the USB context, are mainly based on

FPGAs [7] [6]. Cynthion [8] is one of them and is specifically

designed for USB analysis and can be used to perform MITM

attacks when combined with a host. In this work, USB Proxy

[1] was reused to ensure the MITM on the USB link, allowing

us to focus on the reverse engineering of the edge-TPU runtime

and the implementation of the attack scenarios.

C. Reverse engineering the USB traffic

A preliminary step was to passively capture the USB traffic

and analyze it in order to identify the different types of trans-

actions exchanged between the host and the accelerator. To this

purpose, Wireshark was used to monitor all the traffic in real

time. After being able to see what is being sent and received in

a decoded format, we moved forward with the understanding

of the Edge TPU Runtime (libedgetpu), the one in charge of

all the data transfers. By Recompiling a new binary of the

Edge TPU Runtime with debug symbols enabled and using

gdb to step through the code during the inference process was

done to better understand the sequence. In addition, the work

of George Hotz on the reverse engineering of Coral-AI Edge-

TPU was inspiring. In fact, he has tried to make his deep

learning framework called Tynigrad, compatible with the Coral

USB Accelerator in order to bypass completely the Coral USB

Accelerator’s software stack. From his work, we successfully

enabled a multi-level logging system which was disabled by

default. This was a critical step to understand what the Coral-

AI runtime, called libedgetpu, was doing during the inference

process. During the reverse engineering step, different types of

transactions exchanged between the host and the accelerator

based on the size of the allocated memory for each transaction

were identified. Then, we were able to know how the host

tells the accelerator that the data being sent corresponds to

the input tensor, model parameters, or inference results. For

instance, before each transaction, the host sends a bulk transfer

with a payload of 8 bytes that contains the type of the next

transaction to be sent and the size of its payload. This only

applies to data sent from the host to the device. By knowing

all these details, the attack scenarios can be refined.

D. Attack scenarios

Being able to interface the USB link and to gain full control

of the traffic, make it possible to develop a large panel of

attacks. In this paper, two attack scenarios were considered:

the first one consists in exfiltrating the model parameters and

the input data. The second one aims at corrupting the inference

results. For the first attack scenario, the USB Proxy’s base

code is modified so that both the input data and the model

parameters are copied before being forwarded to the Coral

USB Accelerator. The challenge is to know exactly when

to stop copying and consider the copy complete, since the

endpoint’s maximum packet size is 512 bytes, while the input

and model parameters can be much larger. The solution lies in

the fact that the transaction size is known in advance, thanks

to the 8-byte packet sent by the host before each transfer. As

for the second attack scenario, the output was targeted directly.

To do this, we simply intercept and tamper with the bulk-type

transactions sent by the Accelerator back to the host through

endpoint 0x81.

III. EXPERIMENTAL RESULTS

All two scenarios were successfully validated in our ex-

periments. For the first scenario, model parameters and input

data were exfiltrated without detection. The input image (par-

rot.jpg), for example, was easily regenerated from the raw byte

stream copied. In the second scenario, the baseline correctly

classified parrot.jpg as ”Ara macao” (75.78% confidence,

Table I). However, after modifying just the first byte of

the output, the classification wrongly shifted to ”Aeronautes

saxatalis” with high confidence (99.61%, Table II), clearly

highlighting the wrong classification with high confidence.

TABLE I
BASELINE INFERENCE RESULT FOR SAMPLE INPUT (PARROT.JPG).

Input Image Attack
Baseline Output

(Class)
Baseline Output

(Confidence)

parrot.jpg
Baseline

(No Attack)
Ara macao 0.75781

TABLE II
INFERENCE RESULT FOR PARROT.JPG AFTER TAMPERING FIRST BYTE

OF OUTPUT TENSOR.

Input Image Attack
Tampered Output

(Class)
Tampered Output

(Confidence)

parrot.jpg

Set 0xFF the
first byte of
the tensor

Aeronautes
saxatalis

0.99609

IV. CONCLUSION

Our research demonstrates critical vulnerabilities in USB

communications of Edge AI accelerators. Using accessible

tools, we revealed significant risks of data leakage and in-

ference corruption, highlighting the urgent need for enhanced

security measures in AI deployments.

REFERENCES

[1] Masataka Sawahara Aristo Chen, Andrey Konovalov. usb-proxy: A usb
proxy based on raw-gadget and libusb. https://github.com/AristoChen/
usb-proxy, 2024. Commit c6454ce; accessed Apr 18, 2025.

[2] Michael Chui, James Manyika, Mehdi Miremadi, Nicolaus Henke, Rita
Chung, Pieter Nel, and Sankalp Malhotra. Notes from the ai frontier:
Insights from hundreds of use cases. McKinsey Global Institute, 2(267):1–
31, 2018.

[3] Coral. Coral products. https://coral.ai/products/. Accessed: March 31,
2025.

[4] Mihailo Isakov, Vijay Gadepally, Karen M Gettings, and Michel A Kinsy.
Survey of attacks and defenses on edge-deployed neural networks. In
2019 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–8. IEEE, 2019.

[5] Han Wu, Sareh Rowlands, and Johan Wahlström. A human-in-the-middle
attack against object detection systems. IEEE Transactions on Artificial

Intelligence, 2024.
[6] Mohamed Amine Khelif, Jordane Lorandel, Olivier Romain, Matthieu

Regnery, Denis Baheux, and Guillaume Barbu. Toward a hardware man-
in-the-middle attack on pcie bus. Microprocessors and Microsystems,
77:103198, 2020.

[7] Wenye Liu, Weiyang He, Bowen Hu, and Chip-Hong Chang. A practical
man-in-the-middle attack on deep learning edge device by sparse light
strip injection into camera data lane. In 2022 IEEE 35th International

System-on-Chip Conference (SOCC), pages 1–6. IEEE, 2022.
[8] Great Scott Gadgets. Cynthion. https://greatscottgadgets.com/cynthion/.

Accessed: April 1, 2025.

https://github.com/AristoChen/usb-proxy
https://github.com/AristoChen/usb-proxy
https://coral.ai/products/
https://greatscottgadgets.com/cynthion/

Implémentation de l’algorithme AKAZE en SYCL
pour multicœur

Sonia Haddouche∗, Erwan Fabiani†, Loïc Lagadec‡, Franck Danober§, Robin Lembach§, Christophe Guillet§
∗Thales LAS France SAS Élancourt, ENSTA, Lab-STICC, CNRS, UMR 6285, Brest, France, sonia.haddouche@ensta.fr

†Univ Brest, Lab-STICC, CNRS, UMR 6285, Brest, France, erwan.fabiani@univ-brest.fr
‡ENSTA, Lab-STICC, CNRS, UMR 6285, Brest, France, loïc.lagadec@ensta.fr

§Thales LAS France SAS, Élancourt, France, {franck.danober, robin.lembach, christophe.guillet}@fr.thalesgroup.com

Résumé—Cette communication présente une étude de cas de
programmation parallèle de l’algorithme AKAZE en SYCL sur
multicœur, réalisée dans le cadre d’un projet initié au sein du
laboratoire commun Lateral Lab-STICC/Thales-LAS. Il explique
la méthodologie utilisée pour migrer un programme OpenMP
vers SYCL.

Index Terms—AKAZE, traitement d’image, programmation
hétérogène, SYCL, multicœur.

I. INTRODUCTION

Disposer de capacités de calcul haute performance est
aujourd’hui critique pour faire face à l’accroissement, tant en
volume qu’en complexité, des données à traiter. Les plate-
formes hétérogènes qui permettent la mise en œuvre de calculs
répartis sur des architectures matérielles différentes nécessitent
un environnement de programmation facilitant la maitrise des
différents modèles de calcul sous-jacents et leurs interactions.

Le standard SYCL [1] (du consortium Khronos) répond à
cet enjeu. Basé sur du C++ mono-source, il met en œuvre
la portabilité et l’hétérogénéité, via un modèle normalisé de
tâches de calcul (kernels) communiquant par des tampons
mémoires, dont le support d’exécution est paramétrable. Par
conséquent, SYCL offre un environnement adéquat pour la
définition de programmes hétérogènes qui exploitent conjoin-
tement plusieurs cibles architecturales (notamment les CPU
multicœurs, les GPU et les FPGA).

Dans ce contexte, nous commençons un projet au sein du
laboratoire commun Lateral Lab-STICC/Thales-LAS, qui vise
à évaluer les apports de la programmation SYCL pour les trai-
tements embarqués spécifiques au domaine métier considéré
(traitement du signal, traitement d’image, classification), et à
établir des méthodes de migration de code legacy et d’aide à
la conception pour SYCL.

Comme premier benchmark, nous avons choisi l’algorithme
AKAZE en raison de sa représentativité et de son utilisation
dans des produits industriels.

Les deux principales implémentations actuelles de la spé-
cification SYCL sont DPC++ [2] (qui fait partie de l’envi-
ronnement de programmation OneApi [3]), et AdaptiveCPP
(anciennement hypSYCL) [4]. Pour cette étude de cas, nous
utilisons DPC++, avec comme support d’exécution un proces-
seur multicœurs.

II. PRÉSENTATION DE L’ALGORITHME AKAZE

AKAZE [5] est un algorithme de traitement d’image pour
l’extraction de caractéristiques (pixels clefs), qui permet un
suivi 2D d’un objet dans un flot vidéo avec une bonne
tolérance aux transformations géométriques. C’est une amé-
lioration, en termes de temps de calcul, de l’algorithme KAZE
[6]. La différence étant qu’AKAZE utilise une diffusion FED
(Fast Explicit Diffusion) alors que KAZE utilise une diffusion
non linéaire traditionnelle (AOS), qui conserve mieux les
structures de l’image, mais nécessite une quantité de calculs
bien plus importante.

L’algorithme AKAZE se déroule en plusieurs étapes prin-
cipales :

1) Construction de l’espace à échelle non linéaire : une
pyramide d’images est générée en appliquant la diffu-
sion rapide (FED) pour obtenir différentes résolutions
de l’image d’entrée.

2) Extraction des caractéristiques : des points d’intérêt sont
détectés à différentes échelles en analysant les variations
locales de l’intensité de l’image.

3) Description des caractéristiques : chaque point d’intérêt
est caractérisé par un descripteur binaire robuste, per-
mettant de résumer son apparence locale de manière
compacte et efficace.

4) Appariement des caractéristiques : les descripteurs ex-
traits sont comparés entre deux images afin d’identifier
les correspondances potentielles entre les points d’inté-
rêt.

Le résultat de l’algorithme, illustrant l’appariement des
points caractéristiques entre deux images, est présenté dans
la figure 1.

FIGURE 1. Appariement des points caractéristiques entre deux images.

III. PROCESSUS DE MIGRATION DE AKAZE EN SYCL

Nous avons choisi l’implémentation AKAZE de C. Sweeney
[7] comme programme de référence. Sa particularité, par
rapport à la version C++ originale [8], est qu’elle n’utilise
pas la bibliothèque OpenCV, ce qui répond à nos contraintes
industrielles. Cette version utilise la bibliothèque d’algèbre
linéaire Eigen et exploite la parallélisation des boucles via
des directives OpenMP.

Le processus de migration en SYCL DPC++ est constitué
des étapes suivantes :

1) Adapter le code C++ aux standards modernes, rempla-
cer les anciennes pratiques comme memcpy par des
méthodes sûres comme copy, adaptées aux objets com-
plexes.

2) Identifier et isoler les principaux noyaux de calcul de la
version initiale, enregistrer les entrées/sorties de chacun
d’entre eux, afin d’avoir une base de comparaison avec
la version SYCL, en mettant en place des tests unitaires.
La figure 2 illustre la structuration et l’organisation avec
les noyaux identifiés.

3) Résoudre les problèmes de compatibilité entre la modé-
lisation de la bibliothèque Eigen et l’implémentation de
SYCL, notamment en utilisant la bibliothèque BLAS
de oneMKL [9] de oneAPI pour calculer le produit
matriciel à la place de celui d’Eigen, par exemple.

4) Modifier progressivement chacun des noyaux identifiés
pour chaque étape clé de l’algorithme, les valider via
les tests unitaires, puis les intégrer dans le programme
global.

5) Comparer les temps de traitement des noyaux de calcul
OpenMP et SYCL individuellement et globalement, en
faisant varier le nombre de threads, afin d’identifier en
amont toute anomalie dans l’exploitation du parallé-
lisme.

Des résultats préliminaires sur plusieurs noyaux montrent
des temps de calcul comparables à la version OpenMP. La
répartition des work-items en SYCL offre plus de flexibilité
que OpenMP, mais peut avoir un impact significatif sur les
performances selon la structuration choisie. Ces deux aspects
sont détaillés dans le poster.

IV. CONCLUSION ET PERSPECTIVES

SYCL est un environnement de mise en œuvre de traite-
ments accélérés parallèles multi-plateforme. Généraliser son
usage dans des systèmes industriels amènerait un avantage
de portabilité, mais cela nécessite de s’assurer de ses per-
formances par rapport à du code parallèle existant, comme
en OpenMP, et d’établir une méthodologie de migration au-
tomatisable. L’étude de cas présentée, l’algorithme AKAZE
mis en œuvre sur multicœur avec DPC++, contribue à cette
perspective.

La suite des travaux portera sur l’évaluation des perfor-
mances avec l’implémentation AdaptiveCPP, puis l’étude de
la portabilité du code pour une cible GPU avec une analyse

FIGURE 2. Organisation du code avec les noyaux identifiés.

des modifications spécifiques pour ce support. Cette étude de
cas contribuera à établir des patrons de conception adaptés
aux différentes architectures, dans le cadre de notre projet
d’environnement d’aide à la conception SYCL.

RÉFÉRENCES

[1] Khronos Group, “SYCL 2020 specification,” 2020, https://registry.
khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

[2] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, and
X. Tian, Data Parallel C++ : Mastering DPC++ for Programming of
Heterogeneous Systems Using C++ and SYCL, Springer Nature, 2021.

[3] oneAPI Programming Model. [En ligne]. https://www.oneapi.io/.
[4] A. Alpay and V. Heuveline, “AdaptiveCpp Stdpar : C++ Standard

Parallelism Integrated Into a SYCL Compiler,” in Proceedings of the
12th International Workshop on OpenCL and SYCL (IWOCL ’24), 2024.

[5] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast Explicit Diffusion for
Accelerated Features in Nonlinear Scale Spaces,” in British Machine
Vision Conference (BMVC), Bristol, UK, Sep. 2013.

[6] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE Features,” in
European Conference on Computer Vision (ECCV), Florence, Italy, Oct.
2012, pp. 624–638.

[7] C. Sweeney. akaze-eigen. Dépôt GitHub, https://github.com/
sweeneychris/akaze-eigen, 2014.

[8] P. F. Alcantarilla. akaze. Dépôt GitHub, https://github.com/pablofdezalc/
akaze, 2013.

[9] oneAPI Math Kernel Library. [En ligne]. https://oneapi-spec.
uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onemkl/
source/.

FPGA-Based Framework for Memory Exploration

in Heterogeneous AI Systems

Felipe PAIVA ALENCAR, Pascal BENOIT, and David NOVO

LIRMM, Univ. Montpellier, CNRS, Montpellier, France

Abstract—We propose a methodology to evaluate heteroge-
neous AI systems in the presence of emerging on-chip memory
technologies with limited data-retention times. Our approach
couples an in-house RISC-V microcontroller platform (ADAM)
and a configurable systolic accelerator (Gemmini-SV) on an
FPGA, integrated with the IREE compiler stack. By modeling
emerging memories (e.g., capacitorless two-transistor cells) with
synthesizable RTL modules and deploying them on the FPGA for
cycle-accurate emulation, we aim to highlight performance, en-
ergy and trade-offs, as well as scheduling constraints introduced
by limited retention times. This paper outlines the motivation,
core methodology, and future directions of our FPGA-based
exploration framework.

Index Terms—Heterogeneous computing, FPGA, emerging
memory, AI acceleration, scheduling

I. INTRODUCTION

The growth in machine learning workload size has mo-

tivated the development of specialized compute accelerators

such as GPUs and TPU-like accelerators. This resulted in

heterogeneous systems that integrate traditional CPUs with

accelerators, boosting performance for these specialized work-

loads. However, coordinating computation, data movement,

and memory use efficiently across these diverse resources is

challenging. Adding to these coordination challenges, on-chip

memory technologies that promise higher density (e.g., ca-

pacitorless two-transistor cells) at the cost of limited re-

tention times impose strict constraints on data reuse and

scheduling. We propose an FPGA-based framework to study

these challenges through prototype hardware, compiler-level

scheduling experiments, and emulated memory modules. This

framework helps evaluate and optimize scheduling policies

under limited-retention conditions.

II. RELATED WORKS

High-level simulation frameworks enable rapid exploration

of scheduling and data movement, but lack cycle-level preci-

sion. Frameworks such as Stream [1] support experiments on

single and multiple cores with various data movement patterns.

SoC generator frameworks provide comprehensive environ-

ments for designing and evaluating heterogeneous systems.

Projects like Chipyard [2] use Chisel, a non-industry-standard

HDL, which raises the barrier for hardware modification to

meet specific experimental needs.

Accelerator frameworks offer full-stack environments for

prototyping systolic-array-based AI computations. The Gem-

mini accelerator [3] is a parametric, synthesizable systolic-

array generator for RISC-V, enabling efficient hardware pro-

totyping for AI kernels.

Compiler infrastructures bridge high-level ML models and

hardware backends. IREE [4] is an MLIR-based compiler and

runtime that targets CPUs and GPUs and can be extended to

support custom accelerators.

Lu et al. observe that if retention times exceed the lifespan

of activation data in typical AI workloads, explicit refresh

operations become unnecessary, since data are overwritten

before any decay occurs [5]. These studies often focus on

device-level properties or high-level simulations rather than

end-to-end system integration.

In contrast, our work deploys hardware proto-

types—including a parametric RISC-V microcontroller,

our Gemmini-SV accelerator (a SystemVerilog rewrite of

Gemmini), and synthesizable RTL models of emerging

memories—on a single FPGA platform, and couples them

with host-executed, state-of-the-art compiler-driven scheduling

workflows. This end-to-end setup enables comprehensive

evaluation of scheduling strategies and hardware trade-offs

under limited-retention conditions.

III. METHODOLOGY

Our methodology comprises four key components:

FPGA-based prototyping, in-house architecture modules,

an MLIR-driven software stack, and RTL models of

emerging memories. The following subsections describe each

component in detail and show how they integrate into an

end-to-end framework for evaluating scheduling strategies.

A. FPGA-based Prototyping

We use FPGAs to achieve fast, cycle-accurate results with-

out the lengthy runtimes of full RTL simulation. This approach

delivers the speed of high-level simulators such as Stream

without sacrificing accuracy. Our synthesizable, parametric ar-

chitecture supports rapid reconfiguration of cores, accelerators,

and memory blocks. Modular components can be swapped to

explore new configurations or scheduling strategies quickly.

FPGA implementations run end-to-end AI workloads under

real hardware constraints. Integrated performance counters

capture timing and power metrics directly on the FPGA.

B. In-House Architecture: ADAM + Gemmini-SV

Our platform integrates ADAM, a parametric RISC-V mi-

crocontroller, with Gemmini-SV, a SystemVerilog-based vari-

ant of the Gemmini accelerator specialized for ML workloads.

This combination creates a heterogeneous architecture com-

posed of one or more RISC-V cores paired with TPU-like

systolic array accelerators. We can instantiate multiple ADAM

cores, each attached to a Gemmini-SV instance with different

systolic array sizes or memory technologies. For example,

one core might use a small systolic array with a fast SRAM

scratchpad, while another uses a larger array backed by a

high-density emerging memory. At runtime, scheduling poli-

cies can choose the most advantageous configuration based on

workload demands and memory-retention constraints.

C. Software Stack and Scheduling

We leverage the IREE compiler and runtime to deploy

generic ONNX models on our heterogeneous microcontroller

platform. IREE’s MLIR-based IR allows us to map operators

to ADAM and Gemmini-SV and to orchestrate data movement.

Our custom IREE backend implements scheduling heuristics

at compile time, enabling experiments with operator tiling,

data placement, and refresh or migration policies. By adjusting

these policies, we can explore trade-offs between performance,

energy, and retention overhead. Scheduling outcomes are

validated on FPGA using performance counters and memory

access logs.

D. RTL Emulation of Emerging Memories

One issue with FPGA-based evaluations is the absence

of physical emerging memory devices. To address this, we

implement synthesizable RTL memory modules using FPGA

BRAM to emulate novel cell behaviors. Each module includes

configurable latency insertion and data-retention checks that

trigger data invalidation after a set period. For example, our

2T model adds retention checks that mark data invalid when

retention limits are exceeded and triggers an error on invalid

data read. By embedding these RTL modules in Gemmini-SV’s

scratchpad, we measure cycle-accurate timing and energy

overheads imposed by emerging memory constraints. Energy

metrics can later be derived from memory access logs. This

emulation-driven approach ties hardware behavior to software

scheduling, enabling exploration of retention-aware design

strategies.

IV. INITIAL RESULTS

Our FPGA-based exploration framework has achieved sev-

eral key milestones toward enabling scheduling research. The

ADAM microcontroller platform has been successfully de-

ployed on FPGA, integrating a multiple RISC-V cores with

standard peripherals (UART, GPIO, SPI, I2C, TIME). While

operational, we are finalizing the non-intrusive monitoring unit

that will enable precise metric collection without affecting

execution behavior.

We reached a state with the Gemmini-SV accelerator where

it can perform basic matrix operations (R = A ·B +C) with

scratchpad data movement through its DMA engine. However,

it is currently operating in a co-simulation between a RISC-

V ISA emulator and the Gemmini-SV RTL simulation, with

RTL-level integration to the ADAM platform in development.

Figure 1 shows our initial target architecture that combines

ADAM with a single Gemmini-SV instance for scheduling

Fabric

Systolic
Array

TransposerDMA Engine

Scratchpad

Accumulator
Banks

Memory
Banks

Gemmini-SVCV-X-IF
cv32e40x

Prefetcher

AXI4-Lite Mux

Memory Banks Peripherals

Fig. 1. Initial exploration architecture: an ADAM microcontroller instance
with a single RISC-V core tightly coupled to a Gemmini-SV accelerator.

experiments, with future scaling planned for multiple cores

and accelerators.

V. CONCLUSION

In this proposal, we have outlined an end-to-end

FPGA-based framework for studying the interaction between

emerging on-chip memory technologies and heterogeneous AI

accelerators. Our plan combines a parametric RISC-V mi-

crocontroller platform (ADAM), a customizable Gemmini-SV

systolic accelerator, an MLIR-driven compiler stack, and

RTL emulation of novel memory technologies to capture

cycle-accurate performance, energy, and area trade-offs under

limited-retention constraints. Implementation of this frame-

work is ongoing: next steps include synthesizing the RTL

memory modules in FPGA BRAM, completing the custom

IREE backend, and validating scheduling heuristics on repre-

sentative AI benchmarks. We will then extend our memory

models to additional technologies (e.g., FeFET, MRAM) and

refine data-migration and refresh strategies.

REFERENCES

[1] A. Symons, L. Mei, S. Colleman, P. Houshmand, S. Karl, and M. Ver-
helst, “Towards heterogeneous multi-core accelerators exploiting fine-
grained scheduling of layer-fused deep neural networks,” arXiv preprint

arXiv:2212.10612, 2022, available: https://arxiv.org/abs/2212.10612.
[2] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,

A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt,
J. Wright, J. Zhao, Y. S. Shao, K. Asanović, and B. Nikolić, “Chipyard:
Integrated design, simulation, and implementation framework for custom
SoCs,” IEEE Micro, 2020.

[3] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation via
full-stack integration,” in Proceedings of the Annual Design Automation

Conference (DAC), 2021.
[4] The IREE Authors, “IREE,” Sep. 2019. [Online]. Available:

https://github.com/iree-org/iree
[5] A. Lu, J. Lee, T.-H. Kim, M. A. U. Karim, R. S. Park, H. Simka, and

S. Yu, “High-speed emerging memories for AI hardware accelerators,”
Nature Reviews Electrical Engineering, 2024.

1

Design Optimization of CMOS-based Analog

Spiking Neurons: A technological perspective
Harshit Kansal, Chhandak Mukherjee, and Cristell Maneux

Abstract—Minimizing power consumption in non-Von Neu-
mann architectures necessitates in-memory computing, which can
be effectively realized through Spiking Neural Networks (SNNs).
CMOS-based analog circuits are fundamental to neuromorphic
processors; however, transistor scaling introduces challenges due
to short-channel effects (SCEs). This work explores the role of
device architecture on the performance of CMOS-based analog
neurons by comparing implementations based on a 28 nm
Fully Depleted Silicon-on-Insulator (FDSOI) technology with that
of a 28 nm Vertical Nanowire FET (VNWFET). Our results
demonstrate that VNWFETs, due to their superior electrostatics,
offer higher compactness thus requiring lower capacitance and
can handle higher currents, making them promising candidates
for energy-efficient, large-scale SNN implementations.

Index Terms—Spiking Neural Network (SNN), Fully De-
pleted Silicon-on-insulator (FDSOI), Vertical Nanowire FET
(VNWFET).

I. INTRODUCTION

A
NALOG neurobiological circuits leverage non-linear be-

havior of analog components to enable adaptive in-

formation processing, offering distinct advantages over their

digital counterparts [1]. One such implementation of an analog

neuron for Spiking Neural Networks (SNNs) utilizes a one-

transistor-one-resistor (1T1R) synapse, where the input neuron

accumulates incoming spikes until reaching a threshold, at

which point it generates an output spike. The number of

synapses that can be accommodated before neuron firing—also

known as the fan-in of the SNN—along with their distinction,

strongly depends on the neuron’s threshold. Several neuron

circuit designs have been proposed in the literature [2], [3],

with Fig. 1 illustrating a fundamental analog neuron design.

As shown in Fig. 1a, where the input is a current, and Fig.

1b, where the input is a voltage, the latter model incorporates

additional control mechanisms for the refractory period and

output spike characteristics due to the presence of a higher

number of transistors.

In this study, we adopt the neuron model depicted in Fig. 1a,

implemented using both a 28 nm Fully Depleted Silicon-on-

Insulator (FDSOI) technology and a 28 nm Vertical Nanowire

FET (VNWFET). The VNWFET technology, in particular,

offers enhanced immunity to short-channel effects (SCEs) [4].

A key advantage of VNWFETs in analog circuit design is their

superior linearity, which is crucial for neuromorphic computa-

tions. Additionally, the vertical architecture of these transistors

enables higher integration densities, facilitating compact and

H.Kansal, C.Mukherjee and C. Maneux are with the IMS Laboratory,
University of Bordeaux, CNRS-UMR-5281, Bordeaux-INP, Talence, France,
e-mail: harshit.kansal@u-bordeaux.fr.

(a)

(b)

Fig. 1: 28 nm Analog Neuron Circuit for SNN, inspired from

leaky-integrate and fire neuron, where integration happens at

node Vmem and capacitor Cmem accumulates the incoming

charge from the pre-synaptic neuron, while the controlled

leakage is provided through a transistor with suitable Vleak.

efficient circuit implementations. VNWFETs also exhibit low

leakage currents, high ON/OFF ratios, and excellent control

over threshold voltage variations, making them highly suitable

for neuromorphic applications over FDSOI transistors.

In this simulation study, for an FDSOI device, we used

the BSIM4 model along with the associated model card and

included an appropriate netlist for neuron circuit simulations

in the Analog Design System (ADS) environment. At the

same time, the BSIM-CMG model was used for a VNWFET

where the parasitic capacitances due to the source-to-gate

(Cgs) and the drain-to-gate couplings (Cgd) were modified to

adapt the netlist of the neuron circuit. The next section presents

a detailed analysis of the neuron circuit based on these two

implementations.

II. RESULTS AND CONCLUSION

In this section, we first validate our circuit simulation results

for the 28 nm FDSOI technology by ensuring that its behavior

matches the findings reported in [2] (see Fig. 1a) and [3]

(see Fig. 1b). This verification, presented in Fig. 2, allows

2

0 5 0 1 0 0 1 5 0 2 0 0

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6
M

em
br

an
ce

 P
ot

en
tia

l,
V

m
em

 (V
)

T i m e (m s)

(a)

0 5 0 1 0 0 1 5 0 2 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

O
ut

pu
t V

ol
ta

ge
, V

ou
t (V

)

T i m e (m s)

(b)

0 2 4 6 8 1 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

M
em

br
an

e P
ot

en
tia

l,
V

m
em

 (V
)

T i m e (m s)

(c)

0 2 4 6 8 1 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8
O

ut
pu

t V
ol

ta
ge

, V
ou

t (V
)

T i m e (m s)

(d)

Fig. 2: For the neuron circuit model in Fig. 1a (with

FDSOI) (a)Vmem and (b) Vout, with an Iinput of 1.5 nA,

VDD of 1.4 V, Vrefra of 0.14 V, Vleak of 0.1 V, Cmem of 82

fF and Crefra of 8.6 fF. For the neuron circuit model in

Fig. 1b (with FDSOI) (c) Vmem and (d) Vout, with a constant

Vin of 0.4 V, VDD of 0.8 V, Vrefra of 0.2 V, Vleak of 0 V

and Cmem of 1.44 fF. The voltage for controlling the width

of the generated spikes, defined as Vtspike, is kept at 0.35 V.

us to analyze both circuits and identify the input current

amplitude (Iinput) and the membrane capacitance (Cmem) as

key parameters. Figure 3 illustrates the impact of Iinput and

Cmem on Vmem and Vout. A comparison with Fig. 1a and Fig.

1b reveals that decreasing Cmem or increasing Iinput leads to

a higher number of output spikes, highlighting the limiting

values for these parameters. Building on this understanding,

we compare the results in Fig. 3 with those obtained using

the VNWFET-based circuit (Fig. 4). By ensuring an identical

number of output spikes in both FDSOI- and VNWFET-

based implementations, we observe that due to the superior

electrostatics of VNWFETs, the circuit requires a smaller

Cmem of 10 fF for the VNWFET compared to the value of 28

fF for the FDSOI architecture, while accommodating a higher

input current of 3.2 nA for the VNWFET compared to that of

3 nA for its FDSOI counterpart.

In conclusion, VNWFET-based circuits demonstrate signif-

icantly better energy consumption and area economy, making

them highly suitable for large-scale spiking neural networks. In

future work, our aim is to extend this study to larger networks

with a more precise VNWFET model.

ACKNOWLEDGMENT

The authors thank the IMS Laboratory for financial and

infrastructure support.

REFERENCES

[1] Indiveri, G. and Liu, S.C., ”Memory and information processing in neu-
romorphic systems”, Proceedings of the IEEE, Vol.103, No.8, pp.1379-
1397, 2015.

0 5 0 1 0 0 1 5 0 2 0 0

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

M
em

br
an

e P
ot

en
tia

l,
V

m
em

 (V
)

T i m e (m s)

(a)

0 5 0 1 0 0 1 5 0 2 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

O
ut

pu
t V

ol
ta

ge
, V

ou
t (V

)

T i m e (m s)

(b)

0 5 0 1 0 0 1 5 0 2 0 0

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

M
em

br
an

e P
ot

en
tia

l,
V

m
em

 (V
)

T i m e (m s)

(c)

0 5 0 1 0 0 1 5 0 2 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

O
ut

pu
t V

ol
ta

ge
, V

ou
t (V

)

T i m e (m s)

(d)

Fig. 3: For the neuron circuit model in Fig. 1a (with

FDSOI): (a)Vmem and (b) Vout, with an Iinput of 1.5 nA

and Cmem of 28 fF . (c)Vmem and (d) Vout, with an Iinput

of 3 nA and Cmem of 82 fF.

0 5 0 1 0 0 1 5 0 2 0 0

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5
M

em
br

an
e P

ot
en

tia
l,

V
m

em
 (V

)

T i m e (m s)

(a)

0 5 0 1 0 0 1 5 0 2 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

O
ut

pu
t V

ol
ta

ge
, V

ou
t (V

)

T i m e (m s)

(b)

0 5 0 1 0 0 1 5 0 2 0 0

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

M
em

br
an

e P
ot

en
tia

l,
V

m
em

 (V
)

T i m e (m s)

(c)

0 5 0 1 0 0 1 5 0 2 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4
O

ut
pu

t V
ol

ta
ge

, V
ou

t (V
)

T i m e (m s)

(d)

Fig. 4: For the neuron circuit model in Fig. 1a (with

VNWFET): (a)Vmem and (b) Vout, with an Iinput of 1.5 nA

and Cmem of 10 fF . (c)Vmem and (d) Vout, with an Iinput

of 3.2 nA and Cmem of 60 fF.

[2] Palhares, J.H.Q., Beilliard, Y., Sandrini, J., Arnaud, F., Garello, K., Prenat,
G., Anghel, L., Alibart, F., Drouin, D. and Galy, P., ”A tunable and
versatile 28 nm FD-SOI crossbar output circuit for low power analog
SNN inference with eNVM synapses”, Solid-State Electronics, Vol. 209,
p.108779, 2023.

[3] Cincon, V., Vatajelu, E.I., Anghel, L. and Galy, P., ”From 1.8 V to
0.19 V voltage bias on analog spiking neuron in 28nm UTBB FD-
SOI technology”, IEEE Joint International EUROSOI Workshop and

International Conference on Ultimate Integration on Silicon (EUROSOI-

ULIS), Pages 1-4, 2020.
[4] Guerfi, Y. and Larrieu, G., ”Vertical silicon nanowire field effect tran-

sistors with nanoscale gate-all-around”, Nanoscale research letters, Vol.
11, pp.1-7, 2016.

Mapping a DNN Model to Heterogeneous

Hardware Resources

Salsabil Saoudi, Mario Barbareschi, Alberto Bosio

Ecole Centrale de Lyon, INL, UMR5270, 69130 Ecully, France

{firstname.lastname}@ec-lyon.fr, mario.barbareschi@unina.it

Abstract—Efficient deployment of deep neural networks
(DNNs) on resource-constrained hardware is increasingly chal-
lenging due to growing model complexity. This work presents a
framework that partitions DNNs across multiple systolic array
configurations, all operating under the same dataflow strategy.
Performance evaluation is guided by MAESTRO, an analytical
cost model that captures data reuse and estimates key metrics
such as latency and energy. Based on the performance metrics,
the framework optimizes partitioning and hardware allocation.
An Integer Linear Programming (ILP) optimization algorithm
is then used to explore the design space and select the optimal
hardware configuration for the target trained DNN model.

Index Terms—Deep Neural Network, Design Space Explo-
ration, Partitioning, MAESTRO, ILP, Systolic Array, Optimiza-
tion Algorithm

I. INTRODUCTION

A typical DNN model consists of numerous neurons and

a large set of parameters, known as model weights or coeffi-

cients. These are learned during the training phase using the

backpropagation algorithm combined with gradient descent.

Once the DNN is trained sufficiently with adequate data,

it can be used for inference. In this phase, the model applies

its learned weights to new input data to generate predictions

for tasks such as image classification or object detection.

However, due to the large computational demand of deep

networks, it becomes essential to explore methods that can

optimize performance and reduce latency without impacting

the accuracy of the model. One such approach is model

partitioning, which has already shown promise in training

scenarios and becomes even more interesting in inference

contexts, where the frequency of execution is typically much

higher than training.

Partitioning a DNN requires dividing the model into smaller,

computationally manageable components. These partitions can

be strategically distributed across multiple hardware resources,

thereby optimizing resource utilization and enhancing com-

putational efficiency in distributed environments. To enable

such deployment, two principal partitioning strategies are

commonly adopted: vertical partitioning, which divides the

model along its layers, and horizontal partitioning, which

splits computations within layers across devices. Additionally,

pipelining can be applied to further enhance computational

efficiency by overlapping the execution of different partitions.

This technique allows multiple stages of the DNN computation

to be processed simultaneously, reducing overall inference

latency and improving throughput.

Although distributing, deploying, and executing large DNN

models on multiple, potentially heterogeneous hardware re-

sources is a promising approach, it currently requires signif-

icant manual effort. This involves advanced skills in DNN

model design, embedded system programming, and paral-

lel programming for heterogeneous distributed systems. Cur-

rently, there is no comprehensive design and programming

framework that can fully automate the partitioning and de-

ployment of a trained DNN model across multiple hardware

resources. In the long term, the framework we propose aims to

address these challenges. By automating the partitioning, opti-

mization, and hardware allocation process, our framework will

significantly reduce manual design effort, making distributed

DNN on hardware more accessible and efficient.

We propose a framework that partitions DNN model layers

across multiple systolic array configurations using a shared

dataflow. Performance is evaluated using the MAESTRO [1]

analytical cost model, which analyzes data reuse and provides

key metrics such as latency and energy. Based on MAESTRO’s

results, the framework optimizes partitioning and hardware

allocation. An Integer Linear Programming (ILP) approach is

then used to determine the optimal hardware configuration for

efficient DNN deployment.

II. METHODOLOGY

The framework aims to explore how DNNs can be deployed

more efficiently across specialized hardware. The idea stems

from the observation that DNNs often require significant com-

putational resources, and intelligently distributing the work-

load across multiple systolic array configurations could lead

to meaningful improvements in performance and efficiency.

In this initial work, I focus on partitioning the DNN model

into smaller segments, each mapped to a distinct systolic array

configuration, while maintaining a consistent dataflow strategy

throughout the system.

To guide the partitioning process and evaluate hardware

performance, we integrate MAESTRO, as illustrated in Figure

1, a state-of-the-art analytical cost model specifically designed

for systolic array-based DNN accelerators. MAESTRO takes

as input a DNN model description, a data-centric mapping

representation, and hardware resource specifications. These

specifications include key architectural parameters such as the

number of Processing Elements (PEs), global buffer size, and

local buffer size, as depicted in Figure 2. By analyzing differ-

ent forms of data reuse within the accelerator, MAESTRO esti-

Fig. 1. Overview of MAESTRO: Analytical cost model for DNN dataflows [2].

mates over 20 performance metrics, including latency, energy

consumption, throughput, and area, offering critical insights

for optimizing hardware design and partitioning strategies.

Fig. 2. Overview of systolic array

Based on the output from MAESTRO, we attempt to

optimize the use of the hardware by adjusting the partitioning

strategy to better align with the computational characteristics

of each DNN layer. To identify the most efficient configuration

among the possible options, I formulate the problem as an

ILP model as explained in this multi-objective optimization

function:

min (α · Latency + β · Energy) (1)

where α, and β are weighting factors. Taken into account these

constraints:
∑

j

xi,j = 1 ∀i ; Area < γ (2)

where xi,j layer i assigned to hardware configuration j and γ

is weighting factor.This allows to systematically explore the

design space and select the optimal hardware set-up based on

defined performance goals.

Figure 3 illustrates the results of the framework, which

presents a layer-wise latency and energy consumption for four

different hardware configurations of sysolic array applied to

the same DNN model. These configurations have the same

number of PEs and vary in key architectural parameters, such

as the global buffer size and local buffer size, as outlined

above.

Fig. 3. Latency and Energy of the best Hardware Configuration using
MAESTRO for MobileNetV2 model

As shown, both performance metrics exhibit significant vari-

ation between layers, highlighting the sensitivity of different

layers to hardware resource allocation. In particular, deeper

layers tend to be more compute-intensive, leading to higher

runtime and energy.

III. CONCLUSION AND FUTURE WORK

This work presented a framework for efficient DNN deploy-

ment by partitioning models across multiple systolic arrays

under the same dataflow, guided by the MAESTRO cost model

and optimized via ILP. The approach improves inference

efficiency and simplifies hardware allocation. Future direc-

tions include analyzing data movement between system com-

ponents, partitioning across heterogeneous hardware (CPUs,

GPUs, TPUs), adapting to diverse dataflows, and evaluating

hardware accelerator reliability to further improve deployment

robustness and performance.

REFERENCES

[1] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and A. Parashar,
“Maestro: A data-centric approach to understand reuse, performance, and
hardware cost of dnn mappings,” IEEE micro, vol. 40, no. 3, pp. 20–29,
2020.

[2] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna,
“Understanding reuse, performance, and hardware cost of dnn dataflow:
A data-centric approach,” in Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 754–768, 2019.

	Introduction
	gem5 Methodology
	Results
	Future Work
	Conclusion
	Introduction
	Methodology
	Network splitting
	System design

	Experimental Results
	Experimental Testbed
	MobileNetV1

	Conclusion
	References
	Introduction
	Device Structure
	Device Modelling
	Results and discussion
	Conclusion
	References
	Introduction and Background
	Proposed Integrated Framework
	Advanced Software-Based Testing Methodologies
	Machine Learning-Driven Parametric Fault Detection
	Enhanced Built-In Self-Test (BIST) with APRMLS

	Methodology
	Data Generation and Signal Acquisition
	Machine Learning Model Development
	On-Chip Integration and Autonomous Testing

	Experimental Results and Discussion
	Conclusion
	References
	Introduction
	Impact of the spill on side-channel attacks
	Using live-ranges to eliminate leaky spilling
	Observations
	Contribution

	Limits and evaluation
	Conclusion
	References
	Introduction
	Related Work
	Proposal
	Conclusion
	References
	Introduction
	Overview of the DISPEED project
	Conclusion
	References
	Introduction
	MITM Attack on USB communication bus
	Threat model
	Methodology
	Reverse engineering the USB traffic
	Attack scenarios

	Experimental Results
	Conclusion
	References

