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Abstract

State-of-the-art hardware countermeasures against fault attacks are based, among others, on control flow and code integrity

checking. These integrities can be asserted by Generalized Path Signature Analysis and Continuous Signature Monitoring.

However, supporting such mechanisms requires a dedicated compiler flow and does not support indirect jumps. In this work

we propose a technique based on a hardware/software runtime to generate those signatures while executing unmodified

COTS RISC-V binaries. The proposed approach has been implemented on a pipelined rv32i processor, and experimental

results show an average slowdown of ×1.82 compared to unprotected implementations while being completely compiler

independent.

Introduction

Because of their nature, embedded systems are
prone to physical attacks. Several works have demon-
strated that a well-designed cryptographic applica-
tion, whose implementation is considered safe, can be
compromised with fault injection attacks (eg., laser,
EM, clock or power glitch), which induce an incorrect
behavior of the victim processor or a data leak [1].

Countermeasures against such faults can be imple-
mented both in software or in hardware. Software
countermeasures, often inserted at compile time, con-
sist of duplicating part of the instructions to detect
and counter fault injections. This type of countermea-
sures has reached its limits with the emergence of
attacker models allowing for several faults happening
in a single execution. On the other hand, hardware
countermeasures rely on a modified processor mi-
croarchitecture which ensures some form of Control
Flow Integrity (CFI) and code integrity. Among the
numerous existing techniques, Generalized Path Sig-
nature Analysis (GPSA) and Continuous Signature
Monitoring (CSM) [2] happen to provide the best
trade-off between sensitivity and area/performance
overhead.

GPSA/CSM relies on cryptographic signatures to
ensure integrity. Throughout the execution, the pro-
cessor computes a signature based on previously
executed instructions. The dynamic signature is ver-
ified against a reference signature at each branch
and patches are used to correct the signature when
executing branches. Additional instructions are there-
fore needed to load signatures during the execution.
Besides, patches and reference signatures must be
computed ahead of time and inserted in the exe-
cutable.

In GPSA/CSM, the processor datapath is consid-
ered as being protected against faults, for example
through error-detecting codes in both pipeline stage

registers and data/code memory.

This technique is implemented in The SCI-FI RISC-
V core [3], along with an additional mechanism that
protects pipeline control signals through some form
of redundancy.

SCI-FI and other existing approaches share com-
mon limitations: i) the target application needs a
custom compilation flow to embed signature and
patches; ii) indirect branches cannot be handled
without strong assumptions on the possible targets;
iii) function calls, returns, and interrupts require to
store/restore signatures which increases attack sur-
face.

Previous work [4] overcomes these limitations with
a runtime environment for the generation of GPSA
values. This solution comes with a high cost, in
both time and area. Only relying on an interrupt
mechanism and a routine to handle all the program
GPSA values.

In this paper, we present a method to mitigate the
high overheads induced by the method of Savary et
al. [4]. Our approach relies not only on a runtime
environment, but also on a GPSA value generation
when deploying the program. Our runtime also trans-
parently handles indirect branches, function calls,
interrupts, and context switches.

We have designed a proof of concept implementa-
tion based on the Comet RISC-V processor [5]. In our
implementation, the pipeline is modified to check
signatures on control flow instructions and trigger an
interrupt to update patches and signatures whenever
an indirect jump with missing signature is executed.

Our approach has been validated through fault
injection simulations to ensure that protection was
effective. The experimental study also shows that
the average performance slowdown factor due to
dynamic analysis is ×1.82.



Figure 1: Runime overhead on Embench-IoT. The first column corresponds to [4] with a ps-mem main memory of 128 lines,
4-associative. GPSA deploy corresponds to the solution presented in this paper. registers correspond to two sets of 16 128bits
register for indirect jumps, and other instructions, gpsa values.

Ahead of Time Analysis for GPSA

In order to apply GPSA protection on COTS bi-
naries, but with less overheads than existing ap-
proaches, we propose to compute the GPSA values
ahead of time. These values are then stored in data
memory.

During execution, we need the hardware to easily
access the GPSA values of the executed instruction.
To do this, these values are stored with the following
structure: a list of tuple, each corresponding to a
control flow instruction, sorted by PC. To ease the
data cache fetching in memory, the tuples addresses
are align to the data cache line size. A register is also
added to the core, pointing to the values of the next
control flow instruction to be executed.

To browse the list of tuple in constant time, it is
sorted by PC and a fourth value is contained in the
tuples: the address offset. In the tuple corresponding
to an instruction a, the offset is the difference between
the address of this tuple and the address of the tuple
corresponding to the control flow instruction follow-
ing the target of the instruction a. With this structure,
when the CCFI component processes a control flow
instruction, it loads the data cache line containing
the values of this instruction. With these values, it
verifies the dynamic signature. If the branch is taken,
the signature is updated and the address of the tuple
corresponding to the next instruction is obtained by
adding the offset to the current tuple address. Other-
wise, the corresponding tuple is the following tuple
in the list, because it is sorted by PC.

Concerning patches for indirect jumps, as their
targets cannot be known ahead of time, their com-
putation is left to an interrupt mechanism, similar to
the one from Savary et al. [4].

Experimental study

We implemented our solution on the Comet RISC-
V processor. The overall area overhead has been
evaluated thanks to an HLS tool and is presented in
the Table 1.

The figure 1 shows the slowdown between the pre-
vious solution from Savary et al. [4] and our solution

Core area(µm2) overhead
PS-Mem [4] 150311 126.6%
AoT GPSA 74856 12.9%
AoT GPSA + registers 86130 29.9%

Table 1: Area overhead of different solutions. PS-Mem refers to
solution from [4] with a 4-associative 128 lines main memory.
AoT GPSA is the solution presented in this paper. Registers
represents two sets of 16 128bits registers for GPSA values.

on the Embench-IoT benchmarks [6], normalized on
the performances of an unmodified Comet. Results
show a slow-down factor between 1.0 and 5.23, with
an average of ×1.82.

Conclusion

In this paper, we propose a method to apply GPSA
and CSM protections on unmodified binaries, with
an average runtime overhead of ×1.82 and area over-
head of 30%. As far as we know, this is the best hard-
ware/software implementation for GPSA without
compiler dependence and allowing integrity proper-
ties to hold while handling indirect jumps, function
calls, interrupts as well as context switches.
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Abstract—Conventional cryptographic algorithms rely on hard
mathematical problems to ensure an appropriate level of security.
However, with the advent of quantum computing, classical cryp-
tographic algorithms have become vulnerable. For this reason,
Post-Quantum Cryptography (PQC) algorithms have emerged,
as they are designed to resist quantum attacks. Most PQC
algorithms rely on the Learning With Errors (LWE) problem,
where generating pseudo-random controlled errors is crucial.
A well-known solution is the use of hash functions followed
by error samplers, implemented according to specific error
distributions, whose implementation is challenging. This paper
provides a proof of concept demonstrating how Approximate
Computing (AxC) can be exploited in LWE-based cryptographic
algorithms to alleviate this implementation bottleneck. The main
idea is to use AxC circuits to perform certain operations of the
algorithm, introducing the required error for free thanks to the
approximation. Our key contribution is demonstrating how AxC
techniques can be effectively applied to LWE-based algorithms,
highlighting a novel approach to generating and introducing
the error. This concept has proven effective in an approximate
implementation of the FrodoKEM algorithm, showing up to
2.19% improvement in performance.

I. INTRODUCTION

The Learning With Errors (LWE) problem involves recover-

ing a secret vector from linear equations perturbed by small,

structured errors, typically drawn from a discrete Gaussian

or other bounded distributions. It can be represented by the

notation b = A·s+e, where A is the coefficient matrix, s is the

secret vector, e is the error vector, and b is the constant vector

(usually employed as the public key). Its security derives

from worst-case lattice problems, such as the Shortest Vector

Problem (SVP) [1], which remain hard to solve even for

quantum algorithms. The difficulty of distinguishing perturbed

linear equations from random noise is the basis of LWE-based

cryptography.

Error generation poses challenges due to its complex sam-

pling chains: a True Random Number Generator (TRNG)

produces a seed, expanded via a cryptographically secure

hash function (often from the NIST FIPS 202 [2] standard),

then transformed into a Gaussian distribution using an ad-

hoc sampler [3]. While dedicated hardware solutions are

still emerging [4], Approximate Computing (AxC) offers an

alternative by trading accuracy for efficiency, reducing area,

power, and execution time [5].

This paper explores AxC as an optimization strategy for

LWE-based cryptography, replacing explicit error-generation

This work was supported by CARNOT LIST AxPQC funding.

with approximation in matrix-vector multiplication. The

FrodoKEM algorithm [6] directly descends from the LWE

problem, but with b, s, and e instantiated as matrices instead

of vectors. For this reason, we use it as a case study. We

introduce errors via AxC-based digital operators, specifically

approximate adders from EvoApproxLib [7], characterizing

their error distribution. A proof-of-concept implementation

emulates these adders in software to ensure functional correct-

ness, while performance results assume hardware equivalence

to precise adders.

Our key contribution is demonstrating that AxC effectively

introduces errors in LWE-based cryptography, achieving a

2.04% reduction in FrodoKEM’s key exchange execution

time.

II. IMPLEMENTING FRODOKEM WITH AXADDERS

Our approximate FrodoKEM-640 software implementation

is directly derived from the reference one1. We acted on the

sections of code involving the error generation and addition in

the key generation and encryption functions. A graphical high-

level overview of transitioning to an approximate version of

the algorithm is available in Figure 1 for clarity. The diagram

represents the standard algorithm implementation, with the

greyed-out components highlighting the error generation chain

that is removed due to the use of AxADD.

More specifically, all the function calls to the SHAKE128

primitive to generate the matrix e were removed, which has

a direct impact on performance. To introduce the necessary

error in the scheme, we acted on the inner product A · s.

Equation 1 shows the computation details for each element

bij of the public matrix b. Each partial product is normally

cumulated, with the exception of the last one, which is added

to the partial result using the addu16_0GN adder from [7].

bij =

n∑

k=0

aikskj = ai0s0j + . . . +
︸︷︷︸

AxADD

ainsnj (1)

Its operation has been emulated by means of a C function

call provided by the authors of [7]. Figure 2 compares the

error distributions: the original FrodoKEM-640 errors (in blue)

versus those from addu16_0GN (in orange), along with their

respective Gaussian fits. This adder was selected as the most

suitable from the EvoApproxLib library based on its error

characteristics.

1Available at: https://github.com/microsoft/PQCrypto-LWEKE

https://github.com/microsoft/PQCrypto-LWEKE


Fig. 1: Removing the error generation chain.

Fig. 2: Direct comparison of FrodoKEM-640 (in purple) and

addu16_0GN (in orange) error distributions.

Consequently, the errors no longer require the Gaussian

sampling process, resulting in further performance improve-

ments. The rest of the algorithm follows the reference imple-

mentation but with less pseudo-random data and optimized

data structures. This approximate version of FrodoKEM-640

has been finally tested against the NIST KATs to check its

proper functionality and performance.

III. RESULTS

This study was performed on the reference FrodoKEM-640

C implementation1 enriched with the modifications described

in section II. The study was conducted on a Linux system with

kernel version 4.18.0, an Intel Core i3-2120 CPU @ 3.30GHz,

16GB of RAM, and GCC version 8.5.0. The reported metrics

are averages from multiple test vector runs, measured using

the CPU Time Stamp Counter register.

Table I presents execution times (in clock cycles) for key

generation, encryption, decryption, and a complete FrodoKEM

run. The approximate implementation total cycles assume that

an AxADD is implemented on board, replacing its execution

time with that of a single operation. Parentheses indicate the

percentage gain of AxADD over the reference FrodoKEM-

640. The reduction in clock cycles exceeds that in generated

bytes due to error generation overhead. Unlike simple random

sampling, pseudo-random byte extraction from SHAKE128

requires additional function calls for setup and data retrieval,

TABLE I: AxFrodoKEM-640. Execution time in kilo clock

cycles (kcc) and required number of bytes for error generation

(B) for both reference implementation and with AxADD.

KeyGen Encrypt Decrypt FrodoKEM

Execution Time

Reference (kcc)
55,756 72,418 73,215 201,388

Execution Time

AxADD (kcc)

54,580
(-2.11%)

71,078
(-1.85%)

71,078
(-2.19%)

197,272
(-2.04%)

Error Generation

Reference (B)
839,680 839,808 850,048 2,529,536

Error Generation

AxADD (B)

829,440
(-1.22%)

829,440
(-1.23%)

839,680
(-1.22%)

2,498,560
(-1.22%)

followed by Gaussian sampling. As a result, FrodoKEM-640

achieves a 1.22% reduction in generated bytes, translating into

a 2.04% decrease in execution time.

IV. CONCLUSION AND FURTHER PERSPECTIVES

This paper demonstrates the feasibility of using Approxi-

mate Computing (AxC) to optimize Post-Quantum Cryptog-

raphy (PQC), with FrodoKEM as a proof of concept. By

employing approximate adders (AxADDs) to introduce errors,

we achieved a 2.19% execution time improvement and a 1.23%

reduction in generated bytes. While gains in FrodoKEM are

limited by the large public matrix A, this study establishes

AxC as a viable method for integrating error generation into

LWE-based computations, suggesting broader applicability to

other schemes with different structural properties.

Beyond performance, AxC raises considerations regarding

entropy reduction due to the absence of explicit random error

sampling. This analysis is beyond the scope of this paper.

Future work could address this by randomizing the AxADD

point in the approximate matrix inner product.

In summary, AxC offers a promising approach for improv-

ing LWE-based cryptographic schemes, opening avenues for

further research in this promising area.
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I. INTRODUCTION

FALCON [1] is one of the three post-quantum digital signa-

ture schemes that have been recently standardized by NIST due

to the future threat that quantum computers pose to classical

cryptographic schemes [2]. Despite this, there is currently

no full hardware register-transfer level (RTL) implementation

of FALCON. One possible explanation is the rather unusual

requirement for a double-precision floating-point Fast Fourier

Transform (FFT) [3], which is used in FALCON to speed

up polynomial multiplication. In this work, we propose a

full RTL constant-time implementation of the FFT and its

inverse (iFFT), on FPGA, tailored for the specific context of

FALCON. Section II presents the FFT in the context of FAL-

CON before Section III describes the proposed architecture.

Afterwards, the performances of the proposed implementation

are detailed and compared with previous works in Section IV.

Section V concludes.

II. THE FAST FOURIER TRANSFORM IN FALCON

In FALCON, the FFT over the ring Q[x]/(φ) is used with

φ = xN + 1 and N = 2k a power of two. N is a security

parameter of FALCON that can be equal to either 512 or 1024.

Due to FALCON security requirements, IEEE-754 compliant

double-precision floating-point arithmetic is being used [1].

Using the fact that FALCON polynomials are in Z[x]/(φ),
as well as the roots of unity symmetry in Z[x]/(φ), the

storage requirements can be halved and more than half of the

computations can be omitted [1]. Before the optimizations, the

amount of computations to perform is:

#Ops = log
2
(N)×

N

2
(1)

After applying the optimizations, (1) becomes:

#Ops = (log
2
(N)− 1)×

N

4
(2)

III. DESCRIPTION OF THE PROPOSED HARDWARE

ARCHITECTURE

Fig. 1 shows the proposed hardware architecture. On top of

a reset and clock signals, the input signals are:

• start is used to make the component start the compu-

tation of either the FFT or the iFFT.

• inv is used to choose between performing the FFT or

the iFFT.

Control Unit
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Fig. 1. Block diagram of the proposed hardware architecture of the (i)FFT
for FALCON

• coeff_in is a 64-bit bus used to stream in the coeffi-

cients of the input polynomial to transform.

The outputs are:

• ready indicates that the component has finished per-

forming the computations and is streaming out the result.

• coeff_out is a 64-bit bus used to stream out the

coefficients of the result.

The proposed design is divided in four main blocks.

1) The butterfly unit: Made with three complex double-

precision floating-point operators, an adder as well as a

subtractor and a multiplier, it can be reconfigured dynamically

to perform either the radix-2 decimation-in-time FFT or the

radix-2 decimation-in-frequency iFFT.

2) The Polynomial coefficients storage unit: Two true dual

port RAMs are used to store the polynomial coefficients. One

RAM stores the real parts of the polynomial coefficients and

the other RAM stores their imaginary parts. For FALCON-

512, polynomials have 512 coefficients. Only the real and

imaginary parts for the first half of these coefficients are

stored as explained in Section II, so the two RAMs will

each store 256 double-precision floating-point values with 8-

bit addresses. A double-precision floating-point value is stored

on 64 bits (i.e. 8 bytes). Hence, the RAMs will each store



256 × 8 = 2.048 kB. An identical reasoning with FALCON-

1024 gives a 9-bit address bus and two RAMs each storing

512× 8 = 4.096 kB.

3) The Polynomial Coefficient Addresses and Root of Unity

Values Storage Unit: Four single-port ROMs and one dual-

port ROM are used to store the pre-computed coefficient

addresses in RAM and root of unity values. For each butterfly

operation, two complex coefficients and one complex root

of unity are used. Two single-port ROMs are used to store

the pre-computed coefficient addresses in RAM. Using (2), it

is determined that 1024 butterfly operations are required for

the 512-coefficient (i)FFT, and 2304 for the 1024-coefficient

(i)FFT. As the RAMs each store 256 values for the 512-

coefficient (i)FFT and 512 values for the 1024-coefficient

(i)FFT, an 8-bit wide adress bus, for the two ROMs, is required

for the 512-coefficient (i)FFT and an 9-bit wide address bus is

required for the 1024-coefficient (i)FFT. This gives a storage

requirement of 1024 × (8/8) = 1024 × 1 = 1.024 kB and

2304× (9/8) = 2.592 kB respectively for the 512-coefficient

and the 1024-coefficient (i)FFT.

The choice was made to only store once the 64-bit values

that can be used for either the real part or the imaginary part in

one dual-port ROM and to store the sequence in which those

values are used in two single-port ROMs. The reason for that

choice was to reduce the amount of memory required to store

the values needed for the root of unity. If the root of unity

values to be used are stored consecutively in a straightforward

manner, which means that repetitions are possible in the

dual-port ROM, 1024 × 8 = 8.192 kB are needed for the

512-coefficient (i)FFT and 2304 × 8 = 18.432 kB for the

1024-coefficient (i)FFT. If the root of unity values are stored

only once along with the order in which they are accessed,

382 values need to be stored in the dual-port ROM which

corresponds to 382× (64/8) = 3.056 kB, and 1024 addresses

coded on 9 bits in both single-port ROMs which corresponds

to 2 × 1024 × (9/8) = 2 × 1152 = 2.304 kB. This means

that this solution requires 3056 + 2304 = 5.36 kB of storage

capacity for the 512-coefficient (i)FFT, which is a reduction

of 34.6% compared with the straightforward solution. An

identical reasoning, gives a storage requirement of 11.888 kB
for the 1024-coefficient (i)FFT, which represents a reduction

of 35.5% compared with the straightforward solution. Hence,

instead of only one dual-port ROM, two single-port and one

dual-port ROMs are used to store the root of unity values.

Concerning the root of unity values for the iFFT, their real

parts are the same as the root of unity for the FFT and their

imaginary parts are of opposite sign. Hence, only the values

for the FFT are stored. When performing the iFFT the same

values are read from the ROM, but not in the same order.

Indeed, to perform the FFT operations, the addresses are read

consecutively starting from the highest value. To perform the

iFFT operations it is the opposite, the addresses are read

consecutively starting from zero. Additionally, the sign bit of

the imaginary part of the root of unity value is flipped.

4) The Control Unit: The control unit purpose is to manage

the dataflow of the (i)FFT.

TABLE I
(I)FFT-512/(I)FFT-1024 IMPLEMENTATION RESULTS

This work [4] Vivado 2023.2

Floating-point
precision

Double Double Single

FFT length 512 1024 512 512 1024

LUT 9658 9677 8396 1741 1793
FF 369 374 2526 3468 3508
DSP 36 36 9 10 10
BRAM 8 11 9.5 4 5

Latency (cycles) 3074 6658 19800 4589 9474

IV. RESULTS AND COMPARISONS WITH PREVIOUS WORKS

The proposed hardware implementation is described in

VHDL and synthetised using AMD-Xilinx Vivado 2023.2.

Table I reports the implementation results of the proposed

design and compares it with the Vivado 2023.2 (i)FFT IP,

and a co-design implementation of FALCON (i)FFT for the

security parameter N = 512 [4]. The FPGA targetted, in all

the reported results in Table I, is the AMD-Xilinx ZCU104+

(xczu7ev-ffvc1156-2-e) FPGA. The fairest comparison is with

Mandal et al [4]. design as both design use double-precision.

Both have similar metrics for the LUTs and the BRAMs. The

proposed design uses 4× more DSP blocks but around 6.5×
less FFs and clock cycles. As expected when comparing the

proposed design to Vivado’s IP, which uses single-precision,

it uses around 2× more BRAMs, more LUTs and DSPs.

However, the proposed design uses around 10× less FFs and

achieves a lower latency.

V. CONCLUSION

A low-latency full hardware constant-time RTL implemen-

tation of the (i)FFT, tailored for FALCON parameters, was

presented. It achieves the best latency of the literature among

FPGA-based implementations. This work addresses one of

the major difficulties reported concerning the full hardware

implementation of FALCON. This work can be used as an

essential building block for future hardware implementation

works on FALCON.
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Abstract—The increasing use of digital communications has
intensified the need for secure and cost-effective cryptographic
implementations, especially in the Internet-of-Things (IoT). Post-
Quantum Cryptography (PQC) schemes like Learning with
Errors (LWE) and Learning Parity with Noise (LPN) rely on
error distributions that are complex to generate in hardware. The
Learning Parity with Physical Noise (LPPN) approach replaces
explicit error sampling with controllable computational inaccu-
racies. This work implements LPPN on 22nm Fully Depleted
Silicon-On-Insulator (FD-SOI) technology, leveraging back-gate
voltage scaling to generate errors. Experimental results show
that this technique significantly improves error controllability,
demonstrating FD-SOI’s potential for secure PQC applications.

I. INTRODUCTION

The increasing reliance on digital communications has

heightened concerns about security and privacy, especially in

cost-sensitive IoT applications. Ensuring efficient and secure

implementations of encryption primitives remains an engi-

neering challenge. Hard learning problems, such as Learning

with Errors (LWE) and Learning Parity with Noise (LPN),

are the foundation of Post-Quantum Cryptography (PQC) [1].

These schemes rely on matrix-vector operations perturbed by

noise from specific distributions, making error generation a

crucial aspect. Traditional approaches require complex two-

phase sampling chains, which are hard to implement securely

in hardware [2].

To address this, the Learning Parity with Physical Noise

(LPPN) scheme replaces external error sampling with internal

computational inaccuracies [3]. First demonstrated via Over-

Scaling on 65nm technology, its feasibility on advanced nodes

is unclear. In this work, we implement LPPN on 22nm FD-

SOI technology, exploring back-gate voltage scaling as a more

precise method for error control. Experimental results from on-

chip measurements demonstrate its effectiveness, highlighting

FD-SOI’s potential for secure PQC implementations.

II. EXISTING IMPLEMENTATIONS OF LPPN

The core of the LPN problem is a dot product ïx, kð
of two N -bit binary vectors, which can be computed using

bitwise AND followed by N − 1 XOR gates. Figure 1 shows

an example of a serial hardware architecture for N = 4.

Kamel et al. [3] introduced LPPN applying Over-Scaling to

the dot product computation, inducing a controllable error

by lowering the supply voltage. This occurs due to timing

violations when the propagation delay causes the signal to

be sampled by the output flip-flop before it has stabilized,

causing incorrect outputs with probability ϵ. This probability

is shown to be proportional to the supply voltage. However,

the results from [3] are based on SPICE simulations on a 65nm

node. In this paper, we demonstrate the same principle on a

22nm FD-SOI process, showing that the controllability of ϵ is

more complex. To address this, we propose back-gate voltage

scaling as an alternative to Over-Scaling. By applying Reverse

Body Biasing (RBB) to the critical path cells, we increase the

threshold voltage VT and slow down propagation, intentionally

generating timing violations. This method provides a more

precise control over ϵ, offering a novel way to tune error

probabilities in approximate circuits.

Fig. 1. Architecture for a 4-bit binary inner product, including delaying
buffers at each stage of the XOR reduction chain.

III. FD-SOI-BASED LPPN IMPLEMENTATION

The LPPN module was designed at gate-level using System

Verilog and synthesized with Synopsys Design Compiler.

Place & Route was performed with Cadence Innovus using

GlobalFoundries 22nm FD-SOI (GF22FDX) technology. A

128-bit serial architecture was chosen for cryptographic ap-

plications. As shown in Figure 1, four buffers were added

between stages to meet critical path constraints, closely tied to

the circuit’s clock frequency. The inner product module has a



dedicated power domain, enabling independent supply voltage

Over-Scaling and back-gate voltage scaling with respect to the

rest of the circuit.

The LPPN module can operate in two modes:

• Fast Mode: performing multiple consecutive operations

without resetting the input and output registers. In this

mode, errors generated by the operation i depend on the

results of the operation i− 1.

• Slow Mode: it introduces a reset mechanism between

consecutive operations, ensuring that each computation

starts from a reset state. This reset allows to generate

errors independently of the previous output value.

IV. ON-CHIP MEASUREMENTS

In order to compare the controllability of the error provided

by Over-Scaling and back-gate voltage scaling, measurements

were conducted on-silicon at room temperature (25°C ) for the

Fast Mode and Slow Mode scenarios.

(a)

(b)

Fig. 2. On-chip measurement results. (a) Supply voltage sweep. (b) Back-gate
voltage sweep.

The measurement protocol consisted in loading and clearing

the needed operands depending on the scenario, executing the

computation and comparing the result to the expected error-

free output. Ten thousands computations were carried out for

each error point calculation. For each scenario two separate

parameter sweeps were performed:

• On supply voltage VDD (Figure 2a) from 0.7 V to 0.8 V

with 10 mV step.

• On back-gate voltage VBB (Figure 2b) from 0 V to 0.3

V with 10 mV step.

Non-sweeping parameters were kept at their nominal values

of 0.8 V for VDD and 0 V for VBB . The nominal clock

frequency, which is the maximum frequency that generates

no error, was determined to be 90 MHz. The results of these

scenarios show an increase in ϵ as VDD decreases (or VBB

increases). To quantify this effect, we introduce the sensitivity

of ϵ with respect to VDD (or VBB) denoted as Sϵ, and defined

as:

Sϵ = max

(

∆ϵ

|∆V |

)

A higher Sϵ value indicates greater difficulty in controlling

the error probability with the chosen voltage scaling technique.

Table I shows the sensitivity values from the sweeps. For both

Fast and Slow scenarios, the sensitivity of the VBB sweep is

about four times smaller than that of the VDD sweep, resulting

in a much larger error tuning range.

TABLE I
ERROR PROBABILITY SENSITIVITY (V −1)

SOTA This work

Control method Over-Scaling (VDD) Back-gate scaling (VBB)

Sensitivity*
Fast mode 23.5 5.9
Slow mode 23.9 6.5

* Lower is better

V. CONCLUSIONS

This paper explores the implementation of the LPPN

scheme on a 22nm FD-SOI process. Through on-chip measure-

ments, we show that traditional Over-Scaling offers limited

control over error probability at this technology node, raising

concerns about its scalability. To address this, we propose and

validate back-gate voltage scaling as a novel technique for

better error control. Our results demonstrate that this approach

improves error rate controllability, reducing sensitivity by up

to four times compared to supply voltage scaling.
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Abstract—In this paper, the thermal model of 55 nm SiGe HBT
is investigated. Subsequently, we use the S-Parameters technique
to extract the thermal impedance. DC and pulsed measurements
are performed to obtain the parameters representative to the
thermal behaviour. Afterwards, we present the comparison of
our approach on measured data from two SiGe HBT technologies
from STMicroelectronics, B55x and B55.

Index Terms—SiGe HBTs, thermal impedance, thermal net-
work, self-heating, S-Parameters.

I. INTRODUCTION

The miniaturization of the electronic devices and the in-
crease of the power performance demand at high frequency
due to the 5G and 6G requirements [1] lead to push HBT
operation closer to their Safe Operating Area (SOA) limit
[2]. This limit is defined by multiple limiting mechanisms
such as the self-heating and the impact ionization defining
the limit beyond which the device starts to degrade and
become unstable. STMicroelectronics has enhanced its SiGe
HBT technology [3], to face the 6G requirements, this new
generation is called B55X [4]. The main upgrade of the device
is related to his architecture allowing the heat to be dissipated
more efficiently through the backend of line.

In this paper, the first part is dedicated to the thermal
characterization to model the impact of this new device archi-
tecture on the thermal equivalent circuit. In a second phase,
the device has been submitted to some pulsed measurements
and compared to simulations .

II. THERMAL CHARACTERIZATION

A. Thermal Resistance

To extract the thermal resistance, the intersection method
is used. By measuring Gummel plots for two different VCE

values and two different ambient temperatures TAMB, one
collector current IC,int is extracted [5]. Then, using the
equation (1), the thermal resistance is extracted. Among all
the dimensions studied, ranging from emitter area AE =
0.2x0.6µm² to AE = 0.4x5µm², the results shown in this paper
are related to AE = 0.2x5µm², which is considered as the main
dimension.

RTH =
Tamb,2 − Tamb,1

IC,int(VCE,1 − VCE,2)
(1)

By observing the figure 1 comparing the thermal resistance
of the two devices generations, the B55X shows a reduction of
close to 40% compared to the B55. This RTH decrease is due
to the B55X architecture optimized to reduce the self-heating
thanks to the reduced thinness of the SSTI, lower than 100nm,
allowing to expand the heat dissipation cone [6].

B. Thermal impedance

To extract the thermal impedance (ZTH ), the S-Parameters
measurements are performed [7]. These measurements were
achieved between 30kHz and 3GHz since the thermal be-
haviour appears dominant at low frequencies compared to the
electrical one. To extract ZTH , the equation (2) is used with
Y DC
ij , the value for the frequency close to 0 and Y AC

ij , the
Y-parameters corresponding to isothermal conditions.

The figure 2 shows the plot of the magnitude of ZTH . Two
differences can be noted, the first one is related to the low
frequency (¡105 Hz) value of each plot which represents the
RTH value. The second difference is the decrease behaviours
as a function of the frequency. These different frequency
behaviours are representative of the differences of heat dis-
sipation through the device and therefore the architectural
difference.

C. Thermal network

The thermal network used in the current HiCuM simulation
includes only one RTH -CTH cell representing a single pole. A
more accurate thermal pole representation is a network with
three cells called Cauer Network as described on the figure
3. The Cauer network is an electrical representation of the
different parts of the device architecture in terms of thermal
representation.

The figure 4 permit to observe the extraction of this network.
The objective is to match the plot from the equation of the
network with the measurement plot. The magnitude of the
simulated 3-cell thermal network is close to the measurement
demonstrating a better representation than the previous 1-cell
network proving the accuracy of the Cauer network. Another
evidence of the accuracy of the 3-cell model compared to the
single cell model is the pulsed measurement described in the
next section.

III. PULSED MEASUREMENT AND SIMULATIONS

The difference between the two different network in sim-
ulation can be observe by performing transient simulations.
To observe these differences, a pulsed voltage is sent to Base
Emitter junction from 0.7V to 0.9V while keeping constant
the Collector Emitter voltage at 1.5V [9]. Similarly, HiCuM
simulations are performed with the 1-cell thermal network and
with the modified thermal network with three cells.

The results of the different simulations compared to mea-
surements are presented in the figure 5. The normalize current
reach 1 at IC equal to his maximum value. The main difference
with the modified network is the IC values during the rise of
the pulse. The network described by the three-pole thermal
model shows better accuracy than 1-cell network confirming
the S-Parameters analysis. The junction temperature (TJ ) is
also simulated to compare the two networks. The figure 6
represent the junction temperature maximum for different
pulse widths. The temperature is really impacted by the pulse



width because at low pulse width, the IC does not reach his
steady state and TJ does not reach the DC value.

IV. CONCLUSION

For the first time, SiGe HBT B55X from STMicroelec-
tronics has been characterized thermally. The thermal char-
acterization shows a better heat dissipation compared to the
precedent device generation resulting in a lower junction
temperature thanks to a 40 % lower thermal resistance. The
thermal behavior has been simulated with the extraction of the
thermal network and the integration in the HiCuM model. Two
network has been compared and the Cauer network is more
accurate to the measurement than the 1-cell network. The next
step is performing dynamic stress measurements to study their
degradation mechanisms depending on the stress types.
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Fig. 1: Thermal resistance with their error bars versus emitter area
according to different emitter drawn dimensions of B55 and B55x

Fig. 2: Thermal impedance versus frequency for 0.2 x 5 µm2 emitter
area of B55 and B55x

Fig. 3: Electrical equivalent circuit of Cauer thermal network [8]

Fig. 4: ZTH magnitude for different thermal networks

Fig. 5: Normalized collector current response as a function of time
comparing measurement and simulations

Fig. 6: Simulation of TJ,MAX versus the pulse width for specific
bias condition
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Résumé—Dans l’instrumentation nucléaire, le photodétecteur
le plus répandu pour la scintillation est le tube photomulti-
plicateur (PMT). Une alternative est apparue il y a quelques
années avec les photomultiplicateurs au silicium, ou SiPM. La
discrimination des particules pour la non-prolifération nucléaire,
la sécurité ou la sûreté reste un domaine dans lequel les SiPM sont
moins efficaces que les PMT, malgré leur plus grande compacité
et durabilité. Pour garantir les performances de discrimination
de particules, il est essentiel de préserver les caractéristiques
intrinsèques du signal. Les travaux menés ont cherché à obtenir
un modèle complet du SiPM pour simuler leurs réponses à des
interactions gammas et neutrons du scintillateur jusqu’à l’étage
de numérisation. Un script Python a permis de générer des
modèles SPICE de SiPM pour un nombre de détections et des
caractéristiques variables. Des expériences de scintillation ont
fourni des données d’entrée réalistes pour les temps d’arrivée
des photons sur le photodétecteur. Enfin, des comparaisons
d’architectures de préamplification ont montré un impact sur
les capacités de discrimination du SiPM.

Index Terms—Modèle électrique équivalent, discrimination
neutron-gamma , scintillateur, identification de particules, silicon
photomultiplier (SiPM), simulation program with integrated circuit
emphasis (SPICE)

I. INTRODUCTION

L’instrumentation nucléaire répond à diverses applications

telles que l’imagerie médicale et astronomique, la sûreté ou la

sécurité. Les rayonnements ionisants déposent aléatoirement

leur énergie dans les détecteurs au cours du temps sous forme

d’impulsions. L’objectif est de mesurer les caractéristiques de

ces impulsions qui varient en fonction de l’application. Notre

cadre applicatif s’intéresse à la discrimination de particules à

l’aide de systèmes portables pour la caractérisation des sources

ou la radioprotection [1]. Nous réalisons des mesures avec

un scintillateur plastique sur un photomultiplicateur silicium

(SiPM) dans l’objectif de concevoir un système embarqué.

Ces détecteurs génèrent une lumière dans le domaine visible

à la suite d’une interaction avec un rayonnement ionisant. Les

tubes photomultiplicateurs (PMT) et les SiPM sont les deux

technologies utilisées pour la collecte des photons. Les SiPM

autorisent des systèmes plus compacts et mécaniquement plus

durables que ceux utilisant des PMT. Malgré un gain et un

bruit sensibles à la température, les SiPM nécessitent une

tension de fonctionnement plus faible que les PMT, typi-

quement 30 V contre 1000 V, et ne sont pas affectés par

les champs magnétiques ni détruits par la lumière directe

[2]. Un signal généré par l’ensemble scintillateur et SiPM

aura généralement une décroissance de quelques centaines de

nanosecondes et une amplitude de quelques millivolts. Dans

notre cas, nous essayons de séparer les interactions γ des inter-

actions neutroniques. La distinction entre ces impulsions réside

dans la forme de l’impulsion et est l’une des plus difficiles

parmi les différentes particules ionisantes car la différence est

ténue. Des impulsions normalisées de scintillateur plastique

sont présentées en figure 1. La discrimination des particules

dans les systèmes embarqués est généralement réalisée par

la méthode Pulse Shape Discrimination (PSD) [3]. Cette

méthode repose sur le calcul de deux intégrales appelées par la

suite Qtail et Qtotal. Ces intégrales sont calculées pour chaque

impulsion en fixant l’instant de début des portes d’intégration

et leur durée. Le ratio Tail-To-Total (TTT) prend en compte

ces deux intégrations de la manière suivante :

TTT-ratio =

Qtail

Qtotal

. (1)

Cette technique est facile à mettre en œuvre sur des archi-

tectures intégrées comme des FPGA. Ce papier propose de

définir des modèles de simulation de SiPM qui permettent une

comparaison avec les PMT en s’appuyant sur des données

d’entrée réalistes afin d’en conserver le sens physique. La

section II décrit le protocole expérimental et les résultats ayant

permis l’obtention de ces données. La section III décrit la

génération du modèle SPICE de SiPM. Enfin la section IV

décrit succintement les travaux en cours sur l’électronique pour

les SiPM dont certains résultats ont été soumis récemment.

II. ACQUISITION DE DONNÉES D’ENTRÉE

Pour notre application, nous avons besoin de données de

scintillation réalistes. Nous avons mené des expériences avec

du Cs-137 (émission γ) et du Cf-252 (émissions neutroniques

et γ). Pour obtenir ces impulsions, nous avons mis en place un

banc d’essai composé d’un PMT H11284-MOD Hamamatsu

et d’un scintillateur plastique EJ-276 d’Eljen Technology. Des



études internes ont montré que ce PMT était le meilleur

candidat pour la discrimination n/γ. L’EJ-276 est l’un des scin-

tillateurs plastiques classiquement utilisés dans la littérature et

fournit un point de départ cohérent pour la discrimination. Les

impulsions collectées sont traitées en Python a posteriori. Nous

avons ajusté la triple décroissance exponentielle du scintilla-

teur convolué par la fonction de transfert gaussienne du PMT.

La chaı̂ne de mesure combine ces deux contributions, qui

forment une gaussienne modifiée exponentielle. Ces résultats

sont comparés aux données du fabricant. Par concision, tous

ces résultats seront présentés lors du colloque du GDR SOC².

III. MODÈLES POUR LA SIMULATION ÉLECTRIQUE

Les codes Monte Carlo tels que Geant4, MCNP ou PHITS

sont adaptés à la simulation de la physique des scintillateurs.

Ils fournissent une représentation de la probabilité d’interac-

tion et de l’énergie déposée associée. Cependant, les modèles

SiPM ont encore leurs limites pour la photodétection. Les

premiers étaient axés sur le modèle équivalent électrique de

la diode à avalanche pour photon unique (SPAD) [4]. La

figure 2 montre un modèle SPICE couramment utilisé dans

la littérature [5] et sur lequel le développement s’est basé.

Ces modèles ont été appliqués exclusivement à des sorties

de photons uniques (ou multiples simultanés) à des fins de

validation du modèle. Des modèles plus complexes ont ensuite

pris en compte un plus grand nombre de photons, survenant à

différents moments [6], [7]. Ces modèles ont été conçus pour

les besoins de la spectrométrie γ, et nous voulons maintenant

aller plus loin avec des objectifs de discrimination de la

forme de l’impulsion. Un script Python a été développé pour

écrire la netlist automatiquement. Cette approche permet de

modifier tous les paramètres pour configurer n’importe quel

SiPM. Le nombre de cellules actives et totales, l’impédance de

quenching, l’impédance équivalente ou l’impédance de lecture

peuvent être modifiées. Le modèle SPICE créé peut activer
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FIGURE 1. Impulsions moyennes γ et neutron en tension en sortie d’un
ensemble scintillateur et PMT (ajustées)

FIGURE 2. Modèle électrique équivalent de SiPM [5] pour Nf cellules
activées et Ntot−Nf cellules passives. RQ et CQ représentent l’impédance
de quenching, RD et CD le modèle équivalent de diode, Vphoton déclenche
l’avalanche, Vbd est la tension d’avalanche, RP , CP et LP représentent les
éléments parasites.

les SPAD à différents moments grâce à un fichier d’entrée.

Comme le modèle ne peut pas gérer les phénomènes physiques

stochastiques, ceux-ci sont inclus dans ce fichier d’entrée.

Nous simulons également les effets secondaires induits par

le SiPM, tels que les courants d’obscurité, la diaphonie ou les

impulsions secondaires de cette façon. Cette approche permet

de simuler n’importe quelle stimulation photonique en utilisant

la spécification technique du SiPM. Par concision, ces résultats

seront présentés lors du colloque.

IV. CONCLUSION ET PERSPECTIVES

Les travaux présentés permettent de définir la capacité

théorique atteignable de discrimination d’un SiPM. Ce travail

préliminaire a été réalisé en vue de la conception d’une

électronique spécifique (ASIC) pour la discrimination n/γ.

Nous travaillons actuellement sur une étude comparative de

préamplificateurs pour optimiser les performances de discri-

mination n/γ en utilisant des SiPM.
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Abstract—Confidential computing includes various methods to
enhance data security, notably by processing sensitive informa-
tion within Trusted Execution Environments (TEEs). However,
TEEs remain vulnerable to Side-Channel Attacks (SCAs), such
as cache timing attacks, which exploit timing variations to
extract confidential data. Existing TEE designs do not provide
sufficient protection against these threats, highlighting the need
for stronger security measures. This study focuses on integrating
countermeasures specifically targeting timing and cache vulner-
abilities within a TEE. The implementation will leverage the
RISC-V architecture to explore its potential in mitigating SCA
within TEE.

Index Terms—Computer Architecture, Confidential Comput-
ing, Hardware Security, TEEs, SCAs.

I. INTRODUCTION

Trusted Execution Environments (TEEs) are essential for

protecting sensitive data by providing isolated environments

that guarantee both data confidentiality and integrity. Notable

TEEs include proprietary solutions like ARM TrustZone [1],

Intel SGX [2] and AMD SEV [3], as well as open source

solutions such as Keystone [4] and Penglai [5] for RISC-

V. While TEEs offer strong protection against numerous

software attacks, they remain vulnerable to cache-based and

timing side-channel attacks. These attacks exploit variations

in execution time or cache access patterns to extract sensitive

data, posing a major challenge to TEE security.

Microarchitectural cache timing attacks, such as

Prime+Probe, Flush+Reload, and Evict+Time [6], pose

significant challenges to the security of TEEs [7] as they

can leak sensitive data by analyzing cache accesses. Various

countermeasures have been proposed to mitigate these

risks [6], but each comes with trade-offs, some cause high

performance overhead, while others do not fully protect

against all types of side-channel attacks.

II. THREAT MODEL

The threat model considers that applications executing in

both the Rich Execution Environment (REE) and the TEE

are vulnerable to cache-based and transient execution side-

channel attacks [8]. The attacker is any application running

on the system that shares the cache with the victim. This

The work presented in this paper was realized in the frame of the SCAMA
project number ANR-23-CE39-0011, supported by a grant of the French
National Research Agency (ANR).

includes both untrusted applications in the REE and potentially

malicious applications in the TEE. We do not consider physical

attacks (e.g., fault injection, power analysis).

III. KEYSTONE STUDY

Keystone [4] is an open-source TEE designed for RISC-

V processors, combining both security concepts from ARM

TrustZone and Intel SGX to establish a clear separation be-

tween two execution domains. The non-secure world operates

under normal processor conditions, running the untrusted op-

erating system and normal applications while the secure world

ensures the execution of sensitive applications, isolated from

both the operating system and other applications (sensitive

and normal). Keystone is based on a Security Monitor (SM)

that manages the entire lifecycle of enclaves and ensures a

secure communication between the two worlds by using the

RISC-V Physical Memory Protection (PMP) [9] to enforce

memory isolation, ensuring that confidential data and enclaves

are safeguarded against unauthorized access, providing a flex-

ible and efficient security framework. Figure 1 presents the

architecture of a secure system based on enclaves, highlighting

the different privilege levels and the separation between trusted

and untrusted worlds.

Fig. 1. Keystone Architecture: Secure and Non-Secure World Isolation
(adapted from [4]).

IV. COUNTERMEASURES ON KEYSTONE

Various countermeasures have been developed to mitigate

cache timing side-channel attacks [6], each addressing differ-

ent vulnerabilities:



Fig. 2. Flexible Enclaves with Customizable Countermeasures library.

• Constant-time execution: Ensures that both cache access

patterns and control flow remain independent of secret

data, preventing any information leakage through cache

timing attacks. This technique is widely used in crypto-

graphic algorithms like AES to prevent key leakage due

to execution time variations [10].

• Noise injection: Introduces randomness in timing mea-

surements or accesses to shared resources to obscure

variations exploitable by an attacker, thereby preventing

the leakage of sensitive information. This technique is

widely used in cryptographic implementations, real-time

systems, and secure embedded devices [11], [12].

• Enforcing Determinism: Eliminates execution time vari-

ations that could be exploited by an attacker to ex-

tract sensitive information through timing channels. This

technique is widely integrated in debugging frameworks,

cloud computing, and virtual machines security [13], [14].

• Time Partitioning: Controls access to shared resources

over time to prevent cache timing-based attacks. This

is achieved through techniques that influence concurrent

resource access and program transitions. This approach is

widely used in countermeasures such as Cache Flushing

[15], Lattice Scheduling [16], and Execution leases [17].

• Hardware Partitioning: Isolates hardware resources to

prevent cache side-channel attacks by ensuring that each

process has its dedicated space. This technique is widely

used in countermeasures such as cache locking [18],

Cache Coloring [19], and Quasi-Partitioning [20].

This work aims to develop a flexible and modular frame-

work within Keystone. Although existing research primarily

addresses individual mitigation techniques, our approach inte-

grates these countermeasures into a unified framework, thereby

providing users with enhanced flexibility to selectively enable

the protections that best align with their specific security

and performance requirements. One possible direction is to

integrate these protections within the SM to enhance enclave

lifecycle management and security [21]. However, this remains

an open question, and further analysis is required to assess the

feasibility, trade-offs, and effectiveness of such an approach.

Figure 2 illustrates how we envision the Keystone structure

with the integration of these security techniques and protec-

tions.
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Abstract—In the rapidly evolving field of nanoelectronics,
ferroelectric memory devices have emerged as promising can-
didates for advancing compute-in-place (CIP) applications. By
leveraging their unique characteristics, such as nonlinearity and
hysteresis, these devices offer the potential to enhance memory
architectures and improve computational efficiency. This research
introduces a compact, current-based model for the ferroelectric
capacitor (FeCAP), specifically developed to capture its complex
behaviour and enable optimized performance in CIP applications.
Implemented in Verilog-A, the model provides researchers and
engineers with a powerful tool for simulating and designing
energy-efficient memory architectures.

Index Terms—Ferroelectric Memory, Verilog-A Modelling,
Compute-In-Place.

I. INTRODUCTION

The rising demands in modern nanoelectronics call for

memory architectures that can overcome Von Neumann

bottleneck and energy inefficiencies. Compute-In-Place

architectures, which integrate processing modules directly

with the memory [1], offer a promising approach by

reducing data transfer delay and computational load for the

Micro Controller Unit (MCU), enhancing speed and energy

efficiency. Ferroelectric memory devices have attracted

considerable attention for these applications because of their

unique properties: non-linearity, hysteresis, and non-volatility,

which enable rapid switching and improved retention [2].

However, modelling these complex behaviours remains

challenging. To address this, we introduce a compact, current-

based model for ferroelectric memory devices, implemented

in Verilog-A. This current based model can accurately capture

dynamic ferroelectric behaviour and has been previously

validated through extensive simulations reproducing the

behaviour of experimental data [3], paving the way for its

integration into energy-efficient, high-performance computing

systems. This work shows a new implementation of this

model in Keysight ICCAP environment suitable for device

compact modelling using Verilog-A description language.

II. FERROELECTRIC MEMORY DEVICE

A. Ferroelectric Memory Field Effect Transistor

As illustrated in Fig. 1, the ferroelectric capacitor is inte-

grated directly on top of the CMOS gate to form Ferroelectric

Memory Field Effect Transistor (FeMFET). This structure

Fig. 1. (a) Ferroelectric Field Effect Transistors (FeFET) where FE layer
is stacked in CMOS gate, (b) Ferroelectric Memory Field Effect Transistor
(FeMFET), formed by the integration of FeCAP on top of CMOS gate.

eliminates the interface layer that lies between the gate oxide

and the ferroelectric material in the Ferroelectric Field Effect

Transistors (FeFET)s — a layer often linked to increased

imprint effects that can degrade device performance over time

[4]. Eliminating this layer can significantly enhance endurance

of the device. This improved endurance supports compute-

in-place architectures by ensuring reliable operation during

frequent switching cycles.

III. COMPACT MODELLING

A. Current based Preisach model

The current-based model captures the complex dynamics

of the FeCAP by considering three main components of the

current: ferroelectric current (IFE), leakage current (Ileakage)

and dielectric current (IDE) [5]. Among these, the ferroelectric

current is modelled using the Lorentzian function, which pro-

vides an accurate representation of its behaviour under varying

electrical conditions. Furthermore, the Polarization-Electric

field (P-E) hysteresis loop is derived from the integration of

the current, enabling detailed insights into the non-linear and

hysteric properties of the FeCAP.

B. Expressions and parameters used

In the following, the key equations and parameters used in

the model are presented. The total current (ITotal) is modelled

as the sum of the three components as listed above is

expressed in equation (1).

ITotal = IFE + IDE + Ileakage (1)

Since leakage is negligible in ferroelectric devices, Ileakage

is approximated to zero. In equation (2), surface area of



the capacitor is represented by S whereas tfe denotes the

ferroelectric layer thickness, while CDE is the base capacitance

and Voff is the offset voltage of FeCAP.

IDE = CDE ·

dV

dt
with CDE =

ϵ0 · ϵR · S

tfe
(2)

The rate of change of polarization with respect to the electric

field is given by dP/dE. The ferroelectric current is modelled

using a Lorentzian function characterized by its amplitude (A)

and width (w), with Ã used as a normalization factor as shown

in equations (3) & (4).

dP±

dE
=

2 ·A±
· w±

4Ã(
(

E − E
±
c

)2

+ (w±)
2
)

(3)

IFE = S ·

dP

dE
·

dE

dt
with E =

Vapplied − Voff

tfe
(4)

These expressions and parameters together provide a robust

framework for simulating the dynamic behaviour of ferroelec-

tric memory devices. The permittivity of free space is given

by ϵ0 and ϵR is the relative permittivity of the ferroelectric

material used. The values of other parameters used in the

model, obtained from experimental analysis [3], are presented

in Table I.

TABLE I
FITTING PARAMETERS VALUES AND FECAP DIMENSIONS

A (C/m2) w (V/10nm) S (µm2) Voff (V)

0.36 0.54 306 0.32

ALeak tfe(nm) Ec (V/nm) ϵR

0 10 0.179 29.7

IV. VERILOG-A CODE AND RESULTS

A. Verilog-A code used on ICCAP

The following Verilog-A code implements the ferroelectric

capacitor model within the ICCAP simulation environment.

B. Simulated Results

The simulation results of the FeCAP model in the Keysight

ICCAP environment are presented below. Fig. 2 shows tran-

sient analysis under a ramp voltage, highlighting dynamic

response of the ferroelectric capacitor. Fig. 3 presents the I-

V characteristics, illustrating the relationship between applied

voltage and current.

Fig. 2. Transient simulation of FeCAP using Verilog-A model in ICCAP

Fig. 3. I-V Characteristics of FeCAP Fig. 4. P-V Characteristics of FeCAP

Additionally, polarization is simulated by integrating the

current within the model, and the results obtained are shown

in Fig. 4.

CONCLUSION

This work presents a compact Verilog-A model for Fe-

CAPs, readily usable with SPICE tools, and capable of

accurately simulating ferroelectric polarization. The model

supports compute-in-place architectures by ensuring reliable

and efficient operation during frequent switching cycles. The

validation is anticipated in the near future with experimental

data.
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station dans un réseau Wi-Fi HaLow
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Abstract—Le déploiement d’un réseau IoT est soumis à des
contraintes de consommation énergétique. Pour minimiser les
coûts de service, il est essentiel d’optimiser la durée de vie des
objets, qui sont souvent alimentés par des sources d’énergie
peu fiables. Cette optimisation doit s’appuyer sur des modèles
finement ajustés qui prennent en compte toutes les spécificités
de la transmission d’un objet connecté. Dans cette étude, un
modèle de consommation d’énergie est proposé pour le protocole
802.11ah. Ce dernier est basé sur des mesures réalisées in-situ et
les résultats montrent l’influence du nombre de stations sur la
consommation d’énergie d’une station.

Index Terms—Énergie; IoT; Wi-Fi HaLow; IEEE 802.11ah.

I. INTRODUCTION

L’efficacité énergétique est l’un des principaux défis de

l’IoT. Dans ce type de réseau, le nombre d’appareils est

important, ils sont géographiquement dispersés et l’accès à

l’énergie n’est pas fiable. La norme Wi-Fi HaLow a été

spécifiquement conçue pour répondre à ces besoins et elle

hérite des principales caractéristiques du protocole Wi-Fi.

Au niveau de la couche physique, les transmissions sont

réalisées dans des bandes de fréquence inférieures à 1 GHz,

avec une modulation OFDM (Orthogonal Frequency Division

Modulation) dont les caractéristiques sont dans un rapport de

10 avec la norme 802.11ac. La portée est estimée à 1 km et

le débit entre 150 kbit/s et 78 Mbit/s. Une bande passante à

1 MHz a été ajoutée afin d’augmenter la portée de transmission

et améliorer la consommation d’énergie [1], [2].

Au niveau de la couche MAC (Media Access Control),

la norme 802.11ah réutilise les mêmes mécanismes d’accès

au média que le Wi-Fi classique. Ces méthodes sont basées

sur le CSMA/CA (Carrier Sense Multiple Access with Col-

lision Avoidance). La norme introduit également deux nou-

veaux mécanismes d’accès (RAW-Restricted Access Window

et TWT-Target Wake Time) qui permettent à l’AP (Access

Point) de réserver des canaux de transmissions temporels pour

les stations en fonction de leurs besoins [1], [2]. En outre, la

couche MAC intègre une nouvelle structure d’identification

des stations (AID-Association ID) pour gérer jusqu’à 8 000

appareils, et des en-têtes raccourcis pour minimiser la taille

des trames et donc l’empreinte énergétique [3].

Ces caractéristiques renforcent la nécessité d’une

modélisation précise de la consommation d’énergie [4].

Ces travaux ont été soutenus par La Roche-sur-Yon Agglomération, la
Région Pays-de-la-Loire et l’Union européenne à travers le Fonds européen de
développement régional (FEDER) dans le cadre des plateformes WISE’Labs.
Ces travaux ont été financés par l’Agence nationale de la recherche (ANR-
22-PEFT-0007) dans le cadre de France 2030 et du projet NF-FITNESS.

II. MESURE DE LA CONSOMMATION D’ÉNERGIE

Le modèle de consommation énergétique est défini à partir

de l’observation du fonctionnement d’une station 802.11ah, en

utilisant un banc de test représenté sur la Fig. 1.

Fig. 1. Implémentation du banc de test du protocole 802.11ah.

La station est construite autour d’un SoC NRC-7292 qui

contient deux processeurs Cortex M0 et M3, de la mémoire

et toutes les interfaces nécessaires au développement d’une

solution IoT [5]. Le point d’accès est un Raspberry Pi 3B+

équipé d’un shield APHI-7292 [6]. Le serveur est directement

connecté au point d’accès et exécute une solution lwM2M.

Une autre carte Raspberry Pi 3B+ capture les échanges entre

la station et l’AP à l’aide de wireshark. Le courant consommé

par la station est mesuré à l’aide d’un analyseur de courant

Keysight CX-3300 [3]. Le modèle analytique est défini à partir

de ces mesures de consommation d’énergie.

III. MODÈLE ANALYTIQUE DE CONSOMMATION

D’ÉNERGIE

Le fonctionnement d’une station lors d’une phase de réveil

est représenté sur la figure 2, en utilisant un outil générique

basé sur des chaı̂nes de Markov absorbantes [7].

La station se réveille, démarre son RTOS (Real Time

Operating System), réalise des mesures physiques et trans-

met les données au serveur. Les opérations de transmission

sont marquées d’un losange (♦). Si toutes les trames sont

transmises avec succès (ps), la chaı̂ne de Markov se termine

à l’état . Si la transmission d’une seule trame échoue

(pfa), la chaı̂ne de Markov se termine dans l’état . Chaque

opération de transmission est modélisée indépendamment par

une chaı̂ne de Markov absorbante. Cette chaı̂ne décrit les

différents échanges effectués par une station utilisant les

couches de communication IP/UDP. Elle prend également en

compte le nombre de retransmissions et le nombre d’appareils

dans le réseau, en intégrant les stations exposées et cachées

grâce à une distribution géographique.



2

Fig. 2. Modélisation du fonctionnement d’une station 802.11ah lors d’une
phase de réveil.

La station commence par envoyer une trame QoS null data

pour annoncer son réveil à l’AP. Ils s’échangent ensuite des

trames ARP (Address Resolution Protocol) pour mettre à jour

et vérifier le mappage IP/MAC du réseau. Les données, au

format CoAP/JSON sont ensuite envoyées par la station au

serveur. Cet échange se termine par une trame QoS null data

pour annoncer la mise en veille profonde de la station. Toutes

les trames sont acquittées par une trame NDP-ACK.

L’énergie moyenne consommée par une station 802.11ah

et sa probabilité de transmission avec succès sont ainsi

déterminées à l’aide de ce modèle :

Etot = Ewu +Ntx,qos·Etx,qos +Ntx,arp·Etx,arp

+Nrx,arp·Erx,arp +Ntx,coap·Etx,coap

+Nrx,coap·Erx,coap,

(1)

ps =
∏

tr

p
Ntx,tr

s,tx ·

∏

tr

pNrx,tr

s,rx , (2)

où Etot est l’énergie moyenne consommée par une station

pendant une phase de réveil et ps est la probabilité de trans-

mission avec succès. Le modèle est détaillée dans l’article [4].

IV. ANALYSE DES RÉSULTATS

La figure 3 montre l’évolution de la probabilité de transmis-

sion et l’énergie moyenne consommée par bit utile par une

station 802.11ah en fonction du nombre de stations dans le

réseau et pour différentes distances qui la sépare de l’AP. La

probabilité de transmission est représentée sur l’axe de droite

et l’énergie consommée sur l’axe de gauche.

Les limites sont principalement liées au nombre de stations

présents dans le réseau. Lorsqu’il n’y a qu’une seule station, la

probabilité de réussite est proche de 100%. La station effectue

alors une seule tentative de transmission pour chaque trame.

Lorsqu’il y a beaucoup de stations, la probabilité de succès est

proche de 0%, et la station utilise toutes ces tentatives pour

transmettre des données sans succès. De même, à mesure que

la distance entre la station et l’AP augmente, la probabilité

de transmission diminue, ce qui augmente la consommation

d’énergie. Pour surmonter ce problème, la norme propose

différentes solutions : le mécanisme de protection contre les
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Fig. 3. Probabilité de transmission (ligne pointillée) et énergie moyenne
consommée par bit utile (ligne continue) par une station 802.11ah (Ndata =

165 bytes ; Pta = 23 dBm).

collisions RTS/CTS et les mécanismes d’économie d’énergie

RAW et TWT. Ces derniers permettent de regrouper les

stations en fonction de leurs besoins et d’affiner les paramètres

de transmission. Pour être optimale, la mise en grappe doit

favoriser la répartition géographique et minimiser les stations

cachés.

V. CONCLUSION

Dans cette étude, un modèle de consommation énergétique

d’une station 802.11ah est présenté. Le processus de transmis-

sion des trames est modélisé individuellement par une chaı̂ne

de Markov absorbante. Les résultats montrent l’influence du

nombre de nœuds dans un réseau 802.11ah sur la consom-

mation d’énergie. Cette consommation dépend également de

paramètres classiques tels que la puissance d’émission, la

charge, le nombre de retransmissions, la distance et le cycle

de service [4]. Dans tous les cas, l’énergie consommée par

bit utile atteint une valeur limite qui dépend du nombre

total de nœuds dans le réseau. Cette étude [4] propose

des stratégies d’optimisation, telles que l’ajustement de la

puissance d’émission et l’utilisation de RTS/CTS pour min-

imiser les collisions. Ces stratégies peuvent être appliquées

immédiatement pour améliorer les performances du réseau et

optimiser l’efficacité énergétique dans les déploiements IoT.
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Fig. 1 Proposed CMOS capacitive isolation AC switch driving circuit 

 

Fig. 2 Proposed modulator (a) and waveforms corresponding to charging 

/ discharging the capacitor Cm; Vc and the output voltage Vm for 

Vcmd=’0’ (b). 
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Abstract—In this paper, CMOS design of an AC-switch 

control circuit is proposed with the following restrictions: 

immune to a floating ground having the same frequency as the 

AC-switch control signal (1MHz) but a relatively high 

magnitude and short signal delay (<10ns). The proposed 

capacitive-isolation circuit is designed in a CMOS HV 0.35µm 

technology. The simulation results have shown that the floating 

voltage immunity of the proposed circuit is up to 80Vpp (24 

times Vdd) with a signal delay of 10ns. 

Keywords—capacitive isolation, CMOS, signal transmission, 

Bidirectional AC switch, floating ground 

I. INTRODUCTION 

An electronic switch is one of the common electronic 
components used in electronic circuits. To implement a 
switch, CMOS technology is the best candidate compared to 
a Bipolar technology for its drain-source voltage Vds can be 
down to 0V. For a DC switch, the simplest structure is using 
one MOS transistor (PMOS or NMOS), while for an AC 
switch, it becomes more sophisticated because the current 
flowing is bidirectional during each signal cycle. As a result, 
not only more CMOS transistors must be used but also a 
floating voltage node must be included within the switch. If 
the circuit must be CMOS-compatible, more restrictions 
should be respected by the switch control circuit design. 

One of the applications of an AC switch is tuning the 
tank circuit of a receiver [1]. As the signal is sinusoidal, an 
AC switch must be used. As a tank circuit can also be used 
within a HIFU (High Intensity Focused Ultrasound) medical 
system to optimize the power transmission to ultrasound 
(US) transducers [2-4], an AC switch can also be used for the 
latter. 

Auto-tuning tank circuit is one of the possible approaches 
to achieve more efficient power transmission to transducers, 
which motivates this work. To allow a bidirectional current 
flowing through an AC switch, a floating node within the 
switch is needed (Fig. 1), which complicates the switch 
control signal transmission. To overcome the impact of 
floating node on the control signal transmission (Vo must be 
referenced to the floating ground), an electrical isolation 

system must be used. 

Three kinds of electrical isolation can be distinguished 
from the literature: inductive isolation [5], capacitive 
isolation [6] and optical isolation [7]. Among them, 
capacitive isolation is the least used among the three 
isolation systems. But it offers the highest dV/dt speed 
leading to a rather short signal delay. Moreover, the 
capacitive isolation is completely compatible with CMOS 
technology. Even though a capacitive isolator has a limited 
barrier voltage, it can still reach up to 125V in the CMOS 
HV 0.35µm technology. Therefore, a capacitive isolation is 
the most suitable for our application and motivates this 
study. 

II. PROPOSED CAPACITIVE ISOLATION SYSTEM 

The proposed AC-switch driver circuit is shown in Fig. 1. 
It consists in a modulator and a demodulator separated by a 
capacitive isolator. Several key points are worth to mention, 
which clearly distinguish this work from existing work [6]; 
1) to be compatible with CMOS technology, a CMOS-based 
circuit is proposed; 2) as this design aims at integrated circuit 
(IC) design, significant improvements have been made such 
as using grounded capacitor, no resistive charging, with 
chosen charging range; 3) to further improve the circuit 
performances in terms of circuit operation frequency, output 
signal dynamic range as well as isolator impact on carrier 
frequency and immunity against the floating voltage from the 
AC switch, important modifications on circuit structure are 
also made. Both modulator and demodulator are supplied by 
two independent power supplies Vdd and Vcc. 

With a capacitive isolator, to increase the signal 
transmission efficiency, a modulation / demodulation system 
is used to carry the 1MHz control signal on a high-frequency 
carrier signal to decrease the impact of the isolator Cc. 

For a digital signal transmission, an amplitude 
modulation (AM) is performed by the modulator (Fig. 2). By 
way of the capacitive isolator Cc, the AM signal is then sent 
to and demodulated by the demodulator back to 1MHz signal 
before being used for AC-switch control (Fig. 3). 



 

Fig. 3 Simplified demodulator circuit (a) and corresponding signal 

waveforms (b). 

 

Fig. 5 Simulation results of the proposed capacitive isolation system with 

a 80Vpp floating ground. 

III. DESIGN CONSIDERATIONS 

The main idea behind the circuit design is to separate the 
floating ground signal from the AC-switch control signal by 
choosing a high frequency carrier (100 MHz) with respect to 
low frequency floating voltage (1MHz). The capacitive 
isolator combined with the resistive biasing circuit forms a 
high pass filter (Fig. 4). The latter can bring -40dB 
attenuation to the floating ground signal if the cutoff 
frequency of the filter is chosen at 100MHz. 

  

IV. SIMULATION  

The proposed circuit was simulated in Cadence with 
CMOS HV 0.35µm technology with two independent 
voltage supplies of 3.3V. 

 

Fig. 4 Filter small-signal equivalent circuit and its frequency reponse. 

A sinusoidal voltage source was used to bias the floating 
ground. Despite the presence of a floating voltage, the 
control signal could still be restored at the output of the 
demodulator confirming the proposed operation principle, as 
shown in Fig. 5. According to the simulations, the maximum 
floating voltage can be up to 80Vpp while the maximum 
breakdown voltage is of ±125V for capacitors in this CMOS 
process, resulting in a floating ground immunity of 251V/µs 
and a signal delay of 10ns. A total power of 2.65mW was 
observed, among which 2/3 were consumed by the resistive 
biasing circuit. Further power reduction is still necessary and 
under investigation. 

V. CONCLUSION 

In this paper, a CMOS capacitive isolation AC-switch 
control signal transmission system has been proposed. The 
proposed circuit was designed in a CMOS HV 0.35µm 
technology with a voltage supply of 3.3V. The proposed 
circuit is compatible not only with CMOS technology but 
also with MRI environment. The observed signal delay was 
10ns, i.e., only 1% of the signal cycle. Moreover, the 
simulation results showed floating ground immunity up to 
251V/µs, i.e., 80Vpp, which should satisfy our application. 
Among the total power consumption of 2.65mW, two-third 

was consumed by the resistive biasing circuit. Further efforts 
will be on the power reduction. 

TABLE I.  SUMMARY OF IC DESIGN OF THE PROPOSED CAPACITIVE 

ISOLATION SYSTEM 

Parameter IC sim. 

Power supply 3.3V 

Power comsumption 2.65mW 

Clock frequency 100MHz 

Command frequency 1MHz 

Signal delay 10ns 

Maximum floating ground 80Vpp 

Immunity 251V/µs 
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Abstract—La blockchain crée un historique partagé et répliqué
dans un réseau distribué. Son protocole de consensus repose sur
une preuve garantissant le temps écoulé entre deux blocs. Dans
Bitcoin, cette preuve est la Proof of Work qui est inadaptée aux
systèmes embarqués en raison de sa forte consommation énergé-
tique. Proof of Hardware Time propose une alternative à faible
consommation reposant sur la mesure du temps écoulé au sein
d’un System on Module sécurisé comprenant un microprocesseur
ARM Cortex-A7 intégrant une TrustZone et un Trusted Platform
Module. Mais cette mesure peut être altérée par des attaques. Ce
papier introduit une méthode permettant de détecter des dérives
temporelles induites par des attaques en température sur des
composants de sécurité matérielle.

Index Terms—Détection, Dérive Temporelle, TEE, TPM, At-
taque en température, Blockchain

I. INTRODUCTION

Les blockchains s’appuient sur des protocoles de consensus
pour ordonner des évènements au sein de réseaux distribués.
Le protocole utilisé par Bitcoin décourage les comportements
malveillants grâce au mécanisme de la Proof of Work qui
garantit le temps écoulé entre deux enregistrements successifs.
La Proof of Work garantit ce temps écoulé en saturant de
calculs le matériel utilisé. Ainsi, elle engendre de la confiance
entre les pairs du réseau, au détriment de la consommation
d’énergie. C’est pourquoi la recherche s’intéresse à d’autres
mécanismes de preuves visant à garantir le temps écoulé
entre deux enregistrements. Nos travaux de recherche ont
conduit à introduire la Proof of Hardware Time (PoHT) qui
exploite l’horloge de composants de sécurité matérielle, et
pourrait fournir de la confiance à très faible consommation [1].
Cependant, pour que cette approche soit sécurisée, la mesure
du temps écoulé ne doit pas dériver par rapport au temps qui
s’écoule. Pour tenir cette promesse, le matériel qui génère la
preuve doit être d’un niveau de sécurité élevé. S’appuyant
sur l’étude conduite dans [2], qui montre que les horloges
des différents composants de sécurité matérielle dérivent dif-
féremment lorsqu’elles sont soumises à la même contrainte
de température, ce papier introduit un procédé de détection
des dérives d’horloge des composants de sécurité matérielle
utilisés pour construire la PoHT au sein d’un dispositif em-

Ce travail est une action de recherche collaborative soutenue par l’Agence
Nationale de la Recherche (ANR) dans le cadre du programme « investisse-
ments d’avenir » ANR-10-AIRT-05, irtnanoelec

barqué intégrant un processeur ARM Cortex-A7 et un Trusted
Platform Module (TPM).

II. ÉTAT DE L’ART

Les mesures du temps écoulé peuvent être altérées par des
attaques [3]. Par conséquent, dans les preuves basées sur le
temps écoulé [4], l’attestation de mesure peut être intègre
même si la mesure numérique du temps ne reflète pas le
temps réel. Cette vulnérabilité rend possible les long range at-

tacks [5]. Ces attaques consistent à réécrire l’historique d’une
blockchain en générant une chaîne alternative plus longue à
partir d’un bloc plus ancien. Cette attaque devient réalisable
si un adversaire parvient à réduire la mesure numérique du
temps entre deux blocs successifs.

III. PROOF OF HARDWARE TIME

La Proof of Hardware Time (PoHT) atteste du temps
écoulé [1] sur un System on Module (SoM) intégrant une Trust-

Zone et un Trusted Platform Module (TPM). Dans cette étude,
le SoM utilisé est une carte d’évaluation STM32MP157F-
DK2, équipée d’un processeur ARM Cortex-A7 intégrant
une ARM TrustZone et d’un TPM 2.0 (STPM4RasPI). Le
SoM possède différentes horloges pouvant être utilisées pour
mesurer le temps : (1) les timers, (2) la Real-Time Clock (RTC)
et (3) l’horloge du TPM. La Figure 1 illustre l’implémentation
de la PoHT au sein du SoM. Après la réception d’un bloc,
un nouveau bloc est construit dans le Normal World, puis
transféré vers la TrustZone pour calculer la preuve. Un délai
aléatoire, généré à l’aide d’un générateur de nombres aléa-
toires, détermine la durée d’attente. Deux attestations de temps
sont émises par le TPM : une au début et une à la fin de
cette période d’attente, afin de mesurer le temps écoulé. Cette
mesure est utilisée comme preuve et insérée dans le bloc.
Ensuite, le bloc est signé par la TrustZone, puis transmis aux
pairs du réseau via le Normal World.

IV. SYSTÈME DE DÉTECTION BASÉ SUR LA MESURE DES

DÉRIVES D’HORLOGE

Le procédé de détection proposé dans cette section exploite
l’observation du comportements des dérives des horloges
dans [2]. L’horloge RTC est choisie comme référence au sein
du système embarqué En cas de dérive, une interruption est



Fig. 1: Principales étapes de la PoHT réalisées au sein du SoM

Fig. 2: Architecture embarquée du procédé de détection

levée. La décision étant binaire, il s’agit de décider du seuil à
partir duquel l’interruption est générée.

La Figure 2 présente l’architecture embarquée de notre
système de détection. Ce système est mis en œuvre dans une
application sécurisée au sein de la TrustZone. L’exécution de
cette application sécurisée est lancée à intervalles de temps
réguliers par un mécanisme équivalent à un watchdog sécurisé.
A chaque appel, les mesures de temps des différentes horloges
sont collectées, en particulier, la mesure de la RTC et de
l’horloge du TPM. Le seuil de déclenchement de l’interruption
est défini comme variation de 0,5% de la fréquence d’horloge
pour ne pas détecter les fluctuations liées aux temps d’accès
aux mesures. Lorsqu’une interruption est levée, le SoM ef-
fectue une série d’actions pour limiter l’impact de la dérive
détectée. Ces actions peuvent être, par exemple, l’arrêt du dis-
positif, l’arrêt de la génération d’attestations ou un processus
de synchronisation des horloges avec le réseau.

La Figure 3 illustre l’évolution de la fréquence d’horloge du
TPM lors des attaques réalisées dans [2]. Il est observé qu’une
élévation de la température du SoM entraîne une diminution
de la fréquence d’horloge du TPM.

Nous avons simulé une attaque thermique en ajustant
manuellement la fréquence d’horloge du TPM à l’aide des
commandes TPM [6]. Dans cette simulation, une réduc-
tion brutale de la fréquence d’horloge est appliquée afin de
provoquer l’apparition du flag d’interruption. La Figure 4
présente les résultats de cette simulation, mettant en évidence

Fig. 3: Fréquence d’horloge du TPM pendant l’attaque

Fig. 4: Fréquence d’horloge du TPM pendant l’attaque et
valeur du flag d’interruption

l’apparition du flag d’interruption lorsque la fréquence du
TPM varie de 0,5%.

V. CONCLUSION

Ce papier introduit un procédé de détection des dérives
du temps écoulé, mesuré par des composants de sécurité
matérielle en embarqué. Une simulation d’attaque en tem-
pérature est réalisée pour illustrer le bon fonctionnement du
procédé mis en oeuvre. Dans le contexte des blockchains et
de la PoHT, ce procédé de détection peut permettre de fournir
une contre-mesure aux long range attacks.
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Abstract — This paper proposes a system for detecting 

mechanical stress in rails caused by moving trains, using signal 

processing for the interpretation of train wheel defaults. Based 

on previous research on train wheel defaults, this system 

identifies wave propagations associated with mechanical stress 

produced by the impact of the train’s movement on the rails. 

Signal processing methods based as the Short Time Fourier 

Transform and Wavelet Transform are subsequently used on 

the onsite measured data to observe features of train wheel 

behavior and to detect defective wheels and/or rails. 

Keywords— Wavelet, sensors, signal processing, train wheel 

default detection. 

I. INTRODUCTION 

Defective wheels and/or rails can accelerate railway track 
degradation, leading to excessive maintenance costs. Wheel 
flats appear as flat spots on the wheel’s tread, mostly caused 
by emergency braking and slippery conditions on the rail, 
which reduce braking efficiency and deteriorates the tread 
[1]. Based on previous research, it has been proven that 
vibrations caused by a passing train (dynamic stress) are 
affected by the condition of the wheels and railway tracks [1-
5]. The objective of this research is to develop an embedded 
system for the real-time measurement of vibrations 
associated with mechanical stress produced by the impact of 
train movements on rails, to detect wheel flats for predictive 
maintenance purposes using time-frequency processing [6]. 

II. EMBEDDED SYSTEM AND SENSORS 

      The technological choice for the proposed system is 
based on the need to capture the vibrations emitted in the rail 
by moving trains. The proposed solution is to apply sensors 
(accelerometers) on the rail’s web (see Fig. 1), providing a 
reliable and safe location for the sensors. The proposed 
detection system is shown in Fig. 2. It is based on a 
Microchip PIC32 microcontroller development board and 
two accelerometers, ensuring real-time sampling acquisition. 
The sensors are commonly available piezoelectric 
accelerometers from Mikroelectronika, chosen for their wide 
configurable measuring range from ±8g to ±64g and their 
ability to be sensitive to both low and high frequencies 
components of the signal, ensuring accurate tracking of 
mechanical stress signatures related to potential wheel 
defects. The system is programmed to sample data at a speed 
of 4.4 kHz, following the literature [1] [4], where most of the 
energy in the spectrum is contained below 2 kHz. The 
embedded system is linked via a UART connection to a 
laptop running data acquisition software. 

Fig. 1. Sensors on the rail cross-section. 

 

Fig. 2. System prototype with two accelerometers sensors. 

 

III. DATA MEASUREMENTS AND PROCESSING 

With the help of industrial partners, a measurement 
campaign was organized on four freight wagons with bogie- 
type wheels before their mandatory maintenance, and on two 
freight wagons freshly out of maintenance with brand-new 
bogie-type wheels noted as <healthy=. These onsite 
measurements serve as signal references for data processing 
and comparison to detect wheel defects. During the 
measurement campaign, the specific types of defects present 
and their severity prior to maintenance were unknown to us. 
The train speed during the tests ranged from 10 to 15 km/h. 
Fig. 3 shows the acceleration measurement values for a 
convoy of three wagons and one locomotive before 
maintenance. Subsequent expert inspection confirmed the 
presence of a wheel-flat among the tested wagons, thereby 
validating the dataset as representative of a known defect 
case. To characterize this fault, processing methods such as 
the Short Time Fourier Transform (STFT) and the Wavelet 
Transform (WT) were applied. The STFT is great for 
identifying initial spectral energy concentrations and 
frequency evolution over time. To refine the analysis, the 
Wavelet Transform (WT) was then applied, allowing for 
localized examination of non-stationary features in the 
signal. This multi-resolution capability is particularly 
suitable for detecting short-duration transients generated by 
wheel-rail impacts and assessing their relevance in the 
context of wheel defect detection [1][2].



 

Fig. 3. Acceleration data from a three wagons convoy with a flat wheel. 

Fig. 4. FFT spectrum comparison between the defective wagon (green 

plot) and a healthy one (blue plot). 

 

 Initial spectral analysis using the Fast Fourier Transform 

(FFT), despite the non-stationary nature of the signals, helped 

identify frequency bands associated with wheel defects. Fig. 4 

shows that in case of a common wheel default (wheel-flat) the 

300-400 Hz band is the most affected part of the spectrum 

where the neighboring band (500-1500 Hz) stays mostly 

unaffected. 

Fig. 5. STFT spectrum comparison between the defective train (green plot) 

and a healthy one (blue plot). 

 

To refine this analysis and address signal quasi-

stationarity, the Short-Time Fourier Transform (STFT) 

was applied using 1155-sample frames (~0.23 s) with a 

Hanning window. The two bands are refined to 305-

418Hz (peak amplitude) and 616-1156Hz (mean energy). 

Fig. 5 compares both bands, showing consistent amplitude 

elevation in faulty cases, though without sufficient spatial 

resolution to localize the defect precisely. To improve 

localization, the Wavelet Transform (WT) was applied 

using the Morlet wavelet, selected for its excellent time 

resolution. This approach enables the detection of 

transient impact signatures and allows accurate 

identification of the affected bogie. Processing and 

comparing the <defective= and <healthy= peak amplitude 

spectrum (300-400 Hz) data highlights critical differences 

on one wagon. Fig. 6 shows two bogies (one centered at 2 

seconds and the other at 4 seconds), the left one has a 

strong signature with the amplitude reaching green while  

 

Fig. 6. WT absolute difference results between the defective bogie and the 

healthy bogies. 

 

the right one remains largely deep blue, with this 

information it is possible to confirm the presence of a 

default and locate the bogie. Upon closer inspection 

maintenance experts confirmed that the highlighted bogie 

corresponded to the damaged one, validating the 

effectiveness of the proposed approach for defect detection 

using the developed embedded electronic and sensor 

system. 
 

IV. CONCLUSION 

The paper presents an embedded electronic system 

designed for real-time detection and monitoring of wheel 

flats on railway vehicles. The system captures structural 

responses from the rail induced by moving trains and 

applies signal processing techniques, including the Short-

Time Fourier Transform (STFT) and the Wavelet 

Transform (WT), to identify wheel defects. The proposed 

approach demonstrates strong potential for deployment in 

predictive maintenance strategies, enabling early detection 

of wheel flats directly on site. Future work will explore 

additional directions such as barycenter analysis and new 

measurement campaigns to enrich the dataset and develop 

a structured database distinguishing defective and healthy 

wheels across various chassis configurations (bogies, 

standard suspensions, coil springs, etc.). To ensure real-

time automated processing, the system will be ported to an 

FPGA platform and enhanced with AI-based methods. 
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Abstract—Convolutional Neural Networks (CNN), particularly
those used in critical applications, such as autonomous driving,
medical systems, and aerospace, require high reliability. While
these algorithms exhibit inherent resilience, they remain suscepti-
ble to Single-Event Effects (SEE) occurring at the hardware and
impacting the model execution. These effects, usually induced
by interactions with radiation particles, can lead to errors in
electronic components, potentially causing incorrect inferences
and increasing the risk of mispredictions. To evaluate the fault
sensitivity of fixed-point quantized CNN architectures, we pro-
pose SFI4NN, a Statistical Fault Injection (SFI) framework.

Index Terms—CNN, Fault Tolerance, Mitigation, SEU, TMR.

I. INTRODUCTION

Convolutional Neural Networks (CNN) are now deployed in

many fields, including autonomous vehicle driving, medical

systems, and aerospace. The reliability of these algorithms

is crucial in these critical domains, even though they are

inherently resilient. Single-Event Effects (SEE) can occur

due to interactions with radiation particles, leading to errors

in electronic components during inference. When a particle

strikes a memory element, such as a D flip-flop, its value

may change leading to Single-Event Upset (SEU). In the

presence of such faults, AI algorithms can produce erroneous

inferences, increasing the risk of incorrect predictions. To

assess the resilience of CNNs against SEUs, Statistical Fault

Injection (SFI) is typically used, as exhaustive fault injection is

infeasible. However, no existing framework allows to perform

resilient assessment for fixed-point quantized CNN. To address

this limitation, this work presents a SFI framework (SFI4NN)

that allows resilience analysis of quantized CNN models, for

faults occurring not only on the network parameters, but also in

the intermediate data. Our framework enables the simulation

of bit-flips, taking into account their direction from 0 to 1
or from 1 to 0, their location within the CNN, including the

layer and specific bit, to better understand their impact on the

model’s prediction.

II. RELATED WORK

Existing studies mainly evaluate the resilience with respect

to faults occurring in model parameters [1]. However, in-

termediate data, temporarily stored during inference, is also

susceptible to faults. In [2], a SFI method is proposed to limit

the number of faults tested per layer and bit, leading to efficient

evaluation of CNN robustness while significantly reducing

simulation time. However, this study focuses only on floating-

point representations and is not usable for embedded systems

that generally implement fixed-point computation processing

units. Some works explore the vulnerabilities of different data

Bitflip direction

1 0
0 1

User

▸ Defines
• Margin of error
• Confidence level▸ Designs
• Model architecture
• Quantization
• Pruning rate

e = 0.01
t = 0.99

Statistical Fault Injection▸ Creates
• Fault subset
• Random positions (layer, bit)

Quantized and/or Pruned CNN

Dataset Reference model Faulty model

Comparison of predictions

FaultyReference

CNN Sensitivity Analysis

Weights Intermediate data Bits

Fig. 1: SFI4NN’s framework overview.

representations. In [3], fixed-point and floating-point formats

are compared. In fixed-point representation, the most critical

bits are the ones with higher significance, while in floating-

point representation, the exponent bits are the most sensitive.

Furthermore, several studies have shown asymmetries in the

resilience of models related to the direction of bit-flips [4].

However, further investigation is required to characterize their

impact on CNN classification.

III. METHODOLOGY

Exhaustive fault injection becomes computationally infeasi-

ble for complex models. To circumvent this problem, SFI [5]

employs sampling techniques to estimate the impact of faults,

while significantly reducing the number of fault injections.

This approach, described by the following equation (1), allows

for evaluating the robustness of the CNN against SEUs by

defining an error margin and confidence level before the fault

injection campaign.
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Fig. 2: Quantized AlexNet sensitivity results based on SFI4NN (e = 10%, t = 90%).

n(i, l) =
N(i, l)

1 + e2 ·
N(i,l)−1

t2·p(i)∗(1−p(i))

(1)

N(i, l) depends on the CNN architecture and represents the

total number of faults that can be injected into the network,

based on the bit position i and layer l. The parameters e and

t correspond to the error margin and confidence level defined

by the user, respectively. Finally, p denotes the probability

of an error occurring at each bit position. It is important to

note that the number of injected faults increases for higher-

order bits, as they have a greater impact on the network’s

output and are therefore more likely to cause prediction errors.

These probabilities, which determine the fault injection rates

based on the layers and bit positions, are computed using

equation (2).

∀i ∈ I p(i) = pmin +
(D(i)−Dmin)(pmax − pmin)

(Dmax −Dmin)
(2)

D(i) represents the distance of a bit-flip on a value based

on the selected bit. For a bit-flip on the least significant bit

of a signed integer, Dmin is always equal to 1. In contrast,

Dmax depends on the data length I . pmax is automatically set

to 0.5, while pmin also depends on the data length, defined by

the relation pmin = 1
2I .

IV. EXPERIMENTS

The CNN architecture used in this study is based on

AlexNet [6], which consists of five convolutional layers

followed by three linear layers. The final classification is

determined by the neuron with the highest output value.

The AlexNet architecture has about 28.5 million parameters

and processes 289, 994 intermediate data points per CNN

inference. The dataset used in this study is CIFAR-10 [7], con-

sisting of 60, 000 color images divided into 10 distinct classes,

with each having a resolution of 32×32 pixels. The training set

contains 50, 000 samples, while the test set includes 10, 000.

Since the CNN is designed for execution on an embedded

system, the model is quantized using an 8-bit fixed-point

format with the Brevitas [8] framework. This method employs

a Scale Factor (SF) to map weights to their corresponding

signed integer representation, ranging from −128 to +127.

The fault injection campaign follows the SFI4NN approach,

with a 10% error margin and a 90% confidence level. The

results are presented in Figure 2. In each subfigure, the X-

axis represents either the layer index or the bit position, while

the Y-axis indicates the number of errors that resulted in

a prediction mismatch between the faulty and the reference

model, normalized by the total number of injected faults.

Figure 2a illustrates the sensitivity of the layers containing

the CNN parameters in the AlexNet architecture. As shown,

the first convolutional layer is the most sensitive, with approxi-

mately a 1% chance of causing a misprediction. SFI results for

intermediate data are presented in Figure 2b. A large variation

in sensitivity can be observed between layers. By combining

the results from the parameter and intermediate data analyses,

we can assess the bit-level sensitivity across the entire CNN, as

shown in Figure 2c. As expected, most significant bits exhibit

the highest sensitivity on model behavior.

V. CONCLUSION

This paper presents a fault injection method named SFI4NN

based on a statistical approach, designed to assess the re-

silience of fixed-point quantized CNNs. Validated on an

AlexNet trained on CIFAR-10, this method helps identify

critical elements to protect and enables the evaluation of

lighter, cost-effective hardware protection schemes beyond

traditional triplication.
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Abstract—As artificial intelligence (AI) technologies are em-
ployed in more and more sectors and activities, their environmen-
tal footprint has emerged as a significant concern. Among these
technologies, AI accelerators implemented in integrated circuits
(IC) are expected to grow in production volume. The selection
of the IC implementation type (e.g., GPU, ASIC, FPGA, MCU)
for the accelerators has direct effects on the environmental costs
for manufacturing and use, the lifetime of the circuit and the
possibility of more life cycles in a perspective of circular economy.
This work explores the environmental implications in the broad
domains of AI and ICs, and sets the stage for future research
on the IC implementation technology selection for a sustainable
development of AI accelerators.

INTRODUCTION

Among AI technologies, hardware acceleration of AI algo-

rithm is expected to see its market increase in the following

years. As an example, Canalys evaluates that smartphones

equipped with dedicated AI hardware will account for 16%

shipment share in 2024 and 54% by 2028 [1]. AI accelerators

are dedicated hardware, such as ASICs and FPGAs, capable of

efficiently executing AI models and supporting real-time on-

device inference with optimized latency. However, the increas-

ing deployment of these technologies raises critical environ-

mental concerns due to resource consumption, greenhouse gas

emissions, and electronic waste. The choice of the IC type for

implementing such accelerators can affect their environmental

impacts all along the life cycle, from the manufacturing phase

to the end-of-life, going through the possibility of a second

life, making its selection a crucial step for the sustainable

development of AI accelerators. The objective of our research

is to develop a methodology for systematically integrating

technology selection into the eco-design workflow, aiming to

identify the parameters that can guide this choice from the

design phase, also anticipating the perspectives for a circular

economy of the circuit. In order to explore how the technology

choice affects the environmental impact of these systems, we

surveyed ,the following research domains :

• Embedded AI, to outline the challenges and opportunities

within this field;

• Operational footprint of AI;

• Embodied footprint of ICs.

This paper gives an overview on the state of the art of the

three domains, and outlines the future research directions on

the technology selection for AI accelerators.

I. EMBEDDED AI

Embedded AI is emerging as a transformative paradigm,

spanning multiple industries. In the automotive sector, man-

ufacturers have introduced hardware systems tailored to AI-

driven functionalities [14]. The Internet of Things benefits

from embedded AI in sensors deployed across industrial, agri-

cultural, and home automation applications [13]. In healthcare,

AI-embedded devices contribute to diagnostics, monitoring,

and personalized treatments [9].

Embedded AI is offering significant advantages while pos-

ing notable challenges. Among the key opportunities, lever-

aging hardware acceleration for embedded AI tasks enables

low-power computing compared to executing those same tasks

purely in software, which can contribute to improved battery

life and reduced energy consumption [11]. Additionally, the

capacity for local computing enhances the autonomy of sys-

tems, reducing dependency on centralized servers. Another

benefit that embedded intelligence fosters is low latency, a

crucial factor in real-time applications [12]. The confiden-

tiality of data is reinforced, as local processing minimizes

exposure to external threats [9]. Embedded AI systems can be

distributed across various nodes, reducing network congestion

[13]. By executing smaller AI models, embedded AI promotes

computational sobriety, an essential principle for sustainable

development of AI [5]. Lastly, some of the learning layers

of AI model could be implemented in embedded devices,

therefore reducing the load on warehouse scale computing

systems [10].

Despite these advantages, embedded AI faces significant

limitations. The primary challenge lies in the trade-off between

the constrained hardware resources, particularly memory and

power consumption, and the rapid evolution and obsolescence

of AI models. These increasingly complex models demand the

processing of ever-larger volumes of data and require substan-

tial computational power, making their direct implementation

on resource-limited embedded systems difficult. While model

training is often performed on high-performance servers, the

deployment and efficient execution of these advanced models

on embedded devices with limited capabilities remains a key

obstacle. Furthermore, the diversity of architectural standards

complicates the optimization and compatibility of AI applica-

tions across various embedded platforms [9].



II. OPERATIONAL FOOTPRINT OF AI

AI is experiencing unprecedented growth and shows no

signs of slowing [2]. The direction of this growth is that

AI technologies become more integrated into various sec-

tors. Moreover, AI models become increasingly complex, and

therefore, their energy consumption escalates, contributing to

a significant carbon footprint. However, accurately assessing

this impact remains a challenge due to the intricate nature of

AI services and the lack of transparency from major AI firms

[3]. The absence of systematic reporting mechanisms makes

it difficult to obtain precise data on energy consumption and

emissions, yet existing studies indicate a clear trajectory: AI’s

environmental impact is on the rise [4], [5]. Moreover, current

evaluations likely underestimate this impact, as studies often

focus only on energy consumption [5].

A key contributor to AI carbon footprint is the process of

training AI models [6]. Training requires extensive compu-

tational power, often relying on large-scale data centers that

consume significant amounts of electricity. However, more

recent research provides a nuanced perspective, suggesting

that inference emissions are also a major contributor in the

carbon footprint of AI. Carbon emissions from inference could

represent 1.85 to 3.33 times the carbon emissions generated by

training the model [4], [7]. While training remains a significant

factor, this suggests that the long-term energy consumption

associated with inference should not be overlooked.

Beyond direct energy consumption, the systemic and behav-

ioral effects of AI, that could increase AI’s carbon footprint,

remain insufficiently studied [8]. Similarly, AI-driven improve-

ments in efficiency across industries could lead to rebound

effects.

In most studies, only AI services based on models running

on data centers and powerful GPU are studied, but other types

of AI systems, like embedded AI, should be considered.

III. EMBODIED FOOTPRINT OF ICS

ICs significantly contribute to the carbon footprint of com-

puting systems [15], particularly in AI systems [5]. The

manufacturing process is energy-intensive and generates con-

siderable greenhouse gas emissions [16]. However, their en-

vironmental impact is multifaceted, extending beyond carbon

emissions to include abiotic resource depletion and substantial

water usage during manufacturing [15], [16]. Adding envi-

ronmental scores from the established Power, Performance,

Area, and Cost metrics can contribute to the sustainable

development of ICs [17]. Finally, the disposal of the equipment

containing these components leads to a large volume of elec-

tronic waste, presenting additional sustainability challenges.

In 2019, a staggering 53.6 million metric tons of e-waste

were generated globally, with only 17.4% being officially

collected and recycled [18]. The majority of e-waste, including

integrated circuits, is improperly disposed of, often ending up

in landfills or through informal recycling methods, particularly

in low- and middle-income countries [18]. These practices

can lead to the release of toxic substances such as lead,

mercury, and cadmium into the soil, water, and air, causing

severe health consequences for exposed populations, especially

children [19].

RESEARCH DIRECTIONS

This research will bridge the domains of sustainable AI,

embedded AI, and the sustainability of integrated circuits,

aiming to develop a comprehensive methodology that inte-

grates environmental considerations into the early stages of

AI accelerator design. We want to explore how the choice

of technology for implementing an AI accelerator affects its

environmental impact throughout its entire life cycle. Specif-

ically, this research will delve into the comparative analysis

of various technological options, such as ASICs and FPGAs,

assessing their respective environmental impacts throughout

the manufacturing, operational, and end-of-life phases. Our

aim is to identify the parameters that can guide this choice

from the design phase, while also anticipating the perspectives

for a circular economy of the circuit.
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Abstract— This work presents results from accelerated 

aging tests to investigate the reliability of Junctionless Vertical 

Si Nanowire FET (JL-VNWFET) and to analyze the underlying 

degradation mechanisms. From long-term Temperature 

Storage (TS) and Negative Bias Temperature Instability (NBTI) 

tests, a strong degradation of device threshold voltage is 

observed that leads to a leakage current increase with stress 

time. A preliminary model of the degradation mechanism is 

derived based on the VTH-shift extracted during stress and 

relaxation phases. 

Keywords—JL-VNWFET, reliability, temperature storage 

test, NBTI, VTH shift, degradation mechanism 

I. INTRODUCTION 
Emerging 3D transistor technologies, such as the junctionless 
vertical nanowire transistors (VNWFETs), are promising 
candidates for non-conventional computing architectures for 
their high compactness, low latency, and low power 
consumption, especially for designing neural networks 
(NNs). Its 3D vertical structure allows to increase the number 
of transistors per unit area through vertical stacking. The 
transistor fabrication process is also simplified, compared to 
conventional technologies, due to uniform high doping in the 
junctionless channel, while the gate-all-around (GAA) 
structure provides better immunity to short channel effects 
(SCE) and improved gate control [1]. However, the highly 
scaled architecture as well as the ultra-thin oxide layer lead 
to prominent electrothermal and trapping effects that in turn 
impact the electrical performance of the device and hence the 
performance of the logic circuits constructed based on this 
technology [2] [3]. For long-term operation, reliability is 
therefore a major challenge for this emerging technology. In 
order to investigate the underlying failure mechanisms, we 
therefore performed thermal and electrical stress tests, on the 
JL-VNWFET in order to understand and model the 
degradation physics.  

II. TEMPERATURE STORAGE TEST 
A. Thermal stress setup 

The VNWFET devices were subjected to long-term thermal 
stress through temperature storage (TS) tests using the 
standard Measure-Stress-Measure (MSM) technique [4]. For 
this, we essentially subjected the JL-VNWFETs to uniform 
high-temperatures (Tstress of 100°C, 150°C or 200°C) without 
any applied voltage bias for a period of stress time (th). 
Following thermal stress, the samples were measured at room 
temperature under DC operating conditions to study the drift 
of device parameters. The stress-measurement cycles were 
repeated with increasing intervals of th, that followed a 
logarithmic distribution, until the degradation was stabilized. 
The devices under test included transistors with nanowire 
diameters ranging between 17 nm and 34 nm, with 64 or 81 
nanowires in parallel. The ID-VG curves showed a similar 
degradation trend for all devices. As a representative 
example, the ID-VG characteristics of a VNWFET with a 17 

nm diameter and 64 nanowires in parallel (Fig. 1) were 
chosen for the analysis. Two key observations include: (1) a 
shift in the threshold voltage (VTH) and (2) an initial increase 
in the on current, followed by a decrease at higher stress 
temperatures at high gate and drain bias conditions. 

  

 
Figure 1: Evolution of ID-VG characteristics of a JL-VNWFET (17nm 
diameter and 64 nanowires in parallel) with stress time at (a) 100°C, (b) 
150°C, and (c) 200°C. 

 
Figure 2: Extracted VTH of the JL-VNWFETs under test as a function of the 
stress time for a VD= -0.1V at (a) 100°C, (b) 150°C, and (c) 200°C. 

B. Analysis of temperature-induced degradation  

In [2] and [3], we reported that charge trapping at Si-SiO2 
interface and oxide layer leads to the shift of VTH and a linear 
increase of drain current can be observed with temperature. 
This behavior was attributed to a strong temperature 
dependence of the threshold voltage and an almost negligible 
variation in mobility with temperature [5]. The thermal stress 
tests indicate a similar phenomenon which likely provokes 
trap-induced VTH-shift. However, the nature of the 
degradation (permanent or recoverable) depends on whether 
there is capture/release of carriers into/from pre-existing 
traps/defects in the Si/SiO2 layers (recoverable, as is the case 
for DC temperature measurements) or defect generation 
(quasi-permanent). Several studies illustrate that temperature 
increases the activation energy [6], which in turn alters the 
interface state causing a shift in the threshold voltage. 
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III. NEGATIVE BIAS TEMPERATURE INSTABILITY 
A. NBTI stress setup 

Negative Bias Temperature Instability (NBTI) is a critical 
concern in highly scaled emerging FET technologies. In JL-
VNWFET devices, oxide thickness scaling leads to an 
increased sensitivity to NBTI. We initially analysed the 
thermal degradation of the devices under temperature stress 
and since the general degradation due to NBTI showed a 
similar behaviour, we performed NBTI stress measurements 
at room temperature to understand the degradation due to bias 
stress. The HP4155 semiconductor parameter analyser is 
used for its ability to maintain a stable, constant voltage over 
long stress periods. Using GPIB programs written in 
Parameter Extraction Language (PEL), developed in-house, 
we automated the stress-measure-stress sequence to 
minimize possible human errors. To avoid the formation of 
hot carrier by the applied high electric field and   Therefore a 
weak drain voltage (VD = -40mV) was maintained during the 
NBTI stress, the same drain bias used for DC I-V 
measurements for VTH extraction. Three different gate stress 
biases (-0.8V, -1V, -1.2V) were applied on the available 
VNWFET geometries (Fig. 3). The goal of this systematic 
study was to derive geometry and stress bias dependences of 
degradation model parameters. 

 
(a) 

 
(b) 

Figure 3: (a) Setup used for NBTI stress, (b) VD and VG stress bias 
waveforms for NBTI stress/relax phases. 

B. Analysis of NBTI stress tests 

The NBTI stress tests results showed similar results as the 
thermal stress tests. Fig. 4 presents the evolutions of ID-VG 
characteristics of a representative device, with 17nm diameter 
and 81 nanowires in parallel, stressed under a gate voltage of 
-1.1V. As can be observed from Fig. 4 (a), the VTH shift of 
the VNWFET reaches a maximum value around 36 h and the 
characteristics do not evolve further even if the stress 
continued. During the relaxation phase, the device 
characteristics showed an almost complete recovery within 
the first half an hour and recovered to its initial state within 3 
hours of relaxation (Fig. 4 (b)). The characteristics recorded 
36 hours after the recovery started showed no further 
evolution. The threshold voltage of the JL-VNWFET was 
extracted from the ID-VG plots at different stress times (Fig. 
5) which follows a classical stretched exponential model 
describing hole trapping in pre-existing oxide/interface traps 
during the NBTI stress. The threshold voltage shift can be 
empirically modelled by the following equations during the 
stress and the recovery phase, respectively [7], 

 

∆끫殒끫殎끫殎,끫毀끫毀끫毀끫毀끫毀끫毀 = ∆끫殒끫殎끫殎끫殎끫殎끫殎 �1 − exp �− 끫毀끫毀끫毀끫毀끫毀끫毀끫毀끫欞끫毀끫毀끫毀끫毀끫毀끫毀�끫毺1�∆끫殒끫殎끫殎,끫毀끫毀끫殾끫殎끫殎 = ∆끫殒끫殎끫殎끫殎끫殎끫殎 exp �− 끫毀끫毀끫毀끫殾끫殾끫殾끫欞끫毀끫毀끫殾끫殾끫殾�끫毺2 �  

Parameters 끫毺1,끫毺1, τstress  and 끫欞끫毀끫毀끫殾끫殎끫殎  are fitting parameters 
and have the values 0.42, 90s and 0.4, 312 s, respectively. ∆끫殒끫殎끫殎끫殎끫殎끫殎 is the maximum VTH shift observed during NBTI 
stress. All devices showed a similar trend and a full recovery 
after 36 hours. The rapid and complete recovery of the device 
characteristics not only infers a hole trapping dominated 
degradation, but also a weak interface trap/defect generation 
mechanism which is normally a relatively slow but quasi-
permanent process and would have otherwise prevented a full 
recovery during the relaxation.  

  
(a) (b) 

Figure 4: ID-VG of a JL-VNWFET with 17 nm diameter and 81 nanowires in 
parallel showing the evolution of the characteristics for (a) 37h of stress and 
(b) 36h of relaxation. 

(a)                   (b) 
Figure 5: Threshold voltage shift of a JL-VNWFET with 17 nm diameter and 
81 nanowires in parallel for (a) stress and (b) relax comparing the hole 
trapping model (1) with experimental data. 

 
IV. CONCLUSION 

We investigated for the first time the reliability of JL-
VNWFETs under thermal and bias stresses. Progressive 
degradation was observed with stress time. From our analysis 
it was inferred that interface traps dominate the degradation 
induced by long-term temperature stress whereas the bias 
stress degradation is mainly caused by hole trapping. This 
work will be further exploited for improving the compact 
model of JL-VNWFETs and reliability prediction of 3D logic 
circuits based on this technology. 
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Abstract4 La planification de trajectoire évitant les obstacles 
est une tâche fondamentale en robotique mobile, en particulier 

pour les applications logistiques. L9intégration de méthodes de 
planification efficaces pour les robots mobiles logistiques 
constitue un enjeu crucial pour garantir des transports 
autonomes fiables et performants en entrepôt, où la navigation 
dans des environnements denses, la réactivité en temps réel et la 
faible consommation énergétique sont essentielles. Cet article 
propose une stratégie optimisée par epsilon-greedy à 
décroissance progressive, adaptée aux algorithmes 

d9apprentissage par renforcement fondée sur la fonction de 
valeur d9action. Cette stratégie est envisagée pour une 
intégration embarquée sur FPGA d9algorithmes de 
planification locale de trajectoire pour robots de transport. Des 
simulations et une implémentation FPGA sont présentées afin 
d9évaluer la performance de la politique proposée pour la 
sélection des actions dans un environnement déterministe 
caractérisé par une forte densité d9obstacles (> 25 %). 

Comparativement aux travaux similaires, la stratégie proposée 
et son intégration FPGA appliquée à l9algorithme classique Q-
learning montrent un bon compromis entre la performance (en 
termes de temps de convergence), la consommation des 
ressources logiques et la puissance, permettant ainsi 
l9implémentation embarquée d9un planificateur de trajectoire 
temps réel pour robots logistiques. 

Keywords4Planification trajectoire, robot logistique, FPGA, 

apprentissage par renforcement, fonction valeur d9action. 

I. INTRODUCTION  

Dans le domaine de la logistique des entrepôts 
automatisés, des centres de tri et des hubs de distribution, la 
navigation autonome des robots mobiles est essentielle pour 
assurer un transport fluide et optimisé des marchandises. Ces 
environnements, souvent caractérisés par une forte densité 
d9obstacles 4 tels que des étagères, d'autres robots ou du 
personnel 4, qu'ils soient statiques ou dynamiques, exigent 
une prise de décision rapide en temps réel afin d9éviter les 
collisions et de garantir une efficacité opérationnelle [1]. 
L9intégration de solutions de planification de trajectoire à la 
fois efficaces et économes en énergie est donc cruciale pour 
améliorer la performance et l9autonomie des systèmes 
robotiques logistiques. Les algorithmes d9apprentissage par 
renforcement fondés sur la fonction de valeur incluent des 
méthodes telles que le SARSA (State-Action-Reward-State-
Action), l9Expected SARSA, le Q-learning, le Double Q-
learning, le TD(») (Temporal Difference avec lambda) et le 
Monte Carlo Control, qui visent tous à estimer les valeurs 
d'action ou d9état afin de permettre à un agent d9apprendre une 
politique optimale en fonction des récompenses reçues. Ces 
algorithmes d9apprentissage par renforcement (Reinforcement 
Learning, RL) permettent à un agent de prendre des décisions 
optimales en interagissant avec son environnement par essais 
et erreurs [2]. Parmi les nombreuses applications de ces 
techniques, la planification de trajectoire en robotique mobile 
occupe une place centrale. Elle vise à déterminer une 

trajectoire optimale permettant à un agent de se déplacer d9un 
point de départ à une cible tout en évitant les obstacles [3, 4]. 
La littérature distingue généralement trois niveaux de densité 
d9obstacles : inférieure à 10 % (faible), comprise entre 10 % 
et 25 % (modérée), et supérieure à 25330 % (forte densité), en 
particulier lorsque la structure de l9environnement rend la 
navigation plus complexe. Bien que les algorithmes 
d9apprentissage par renforcement basés sur Q présentent de 
bonnes performances dans des environnements à faible 
densité d9obstacles, leur efficacité diminue significativement 
lorsque cette densité augmente, entraînant une convergence 
plus lente et une dégradation globale des performances. Dans 
le cadre applicatif de la planification de trajectoire pour les 
robots logistiques, une densité d9obstacles de l9ordre de 30 % 
est généralement considérée comme significative, notamment 
lorsque les obstacles sont distribués de manière aléatoire ou 
selon des configurations complexes. Par ailleurs, 
l9implémentation matérielle permettant de garantir des 
applications en temps réel sur des systèmes contraints en 
ressources et soumis à des exigences de latence reste un défi 
majeur. Dans ce contexte, où une faible latence et un 
traitement rapide des données sont requis, l9implémentation 
sur FPGA apparaît comme une solution pertinente [5]. Dans 
cet article, nous proposons une implémentation sur FPGA 
d9une nouvelle stratégie epsilon-greedy à décroissance 
progressive, visant à optimiser les approches par renforcement 
reposant sur l9estimation de la fonction de valeur d9action, 
dans le cadre de la planification de trajectoire pour robots 
mobiles. L9objectif est d9améliorer la vitesse de convergence, 
la stabilité des récompenses et l9efficacité de l9exploration. 
Pour valider cette approche, l9optimisation proposée est 
appliquée au Q-learning, implémenté sur une plateforme 
Xilinx Zynq, et évaluée dans un environnement maillé avec 
une densité d9obstacles de 30 %. 

II. MODELISATION ET SIMULATION 

La modélisation de l9environnement pour la planification de 

trajectoire d9un robot est obtenue par une discrétisation en 

grille, représentant les espaces structurés sous forme de 
cellules (libres ou obstacles). Chaque cellule correspond à une 

position possible, simplifiant ainsi la navigation. Des actions 

élémentaires de mouvement (haut, bas, gauche, droite), 

compatibles avec le rayon de braquage du robot mobile, 

permettent des déplacements unitaires entre cellules 

adjacentes. Cette configuration permet une exploration 

systématique des états possibles à travers l9estimation des 

valeurs Q état-action. L9environnement de simulation a été 

configuré pour évaluer les performances de l9agent dans une 

grille de taille 50×50, avec une densité d9obstacles fixée à 

30)% (Figure 1). L9algorithme implémenté simule le 

comportement de l9agent au sein de cet environnement, avec 
les paramètres suivants : taux d9apprentissage de 0,625, 

facteur de réduction de 0,875, nombre maximal d9étapes par 



épisode de 500, et 1000 épisodes au total. Le système de 

récompenses est défini comme suit : 

" Récompense négative de 250 en cas de collision, 
" Récompense maximale de +200 si objectif atteint. 
" Pénalité de 25 pour les états intermédiaires non terminaux. 
" Pénalité de 210 pour visites répétées d9un même état au 
cours d9un même épisode. 
Ce schéma de récompense discret permet à l9agent d9estimer 
efficacement les valeurs Q(s, a) et de favoriser l9apprentissage 
de trajectoires optimales. 

 

Figure 1. Environnement maillé 50 ×50 avec 30% d'obstacles. 

L9évolution des récompenses cumulées au fil des épisodes 
pour un environnement comportant 30)% d9obstacles est 
présentée à la Figure 2. L9axe horizontal représente le nombre 
d9épisodes, tandis que l9axe vertical indique la récompense 
totale obtenue par l9agent à chaque épisode. Les résultats 
montrent que la combinaison de la fonction de récompense 
discrète et du mécanisme d9exploration adaptatif est 
déterminante pour les performances améliorées dans le cas du 
Q-Learning. 

 Figure 
2. Variation des récompenses au fil des épisodes - Environnements 

maillés 50 x 50 /densité obstacles de 30 %. 

La Figure 3 présente les meilleures performances obtenues 
selon la taille des mots binaires. Une politique optimale est 
atteinte en 77,4)¿s après 98 épisodes, ou en 711)¿s après 91 
épisodes selon les configurations testées. L9implémentation 
FPGA de la stratégie proposée d9optimisation par epsilon-
greedy à décroissance progressive a été réalisée pour la 
technologie Xilinx UltraScale+ ZCU104, sous 

l9environnement Vivado 2022.1. Une comparaison avec des 
travaux antérieurs (dans les mêmes conditions : Z = 4 actions 
et technologie FPGA Xilinx ZCU) montre que la stratégie de 
planification par sélection d9action fondée sur la valeur, basée 
sur un générateur de politiques LFSR 16 bits, consomme 
15)mW, 101)LUTs et 64)FFs. L9originalité principale réside 
dans l9intégration d9une stratégie epsilon-greedy décroissante, 
ajustant progressivement l9exploration pour renforcer 
l9exploitation, améliorer les retours cumulés et équilibrer 
temps d9apprentissage et consommation de ressources 
logiques. 

 

Figure 3. Récompenses totales - Environnement maillé 12x12. 

III. CONCLUSION 

Les résultats expérimentaux obtenus à travers les 
différentes simulations montrent qu9un générateur de 
politiques intégrant une stratégie epsilon-greedy décroissante, 
fondée sur l9évolution des récompenses cumulées au fil des 
épisodes, offre un bon compromis entre temps d9apprentissage 
et consommation de ressources logiques. Les résultats 
d9implémentation sur FPGA confirment qu9un générateur de 
politiques basé sur un LFSR 16 bits assure une meilleure 
convergence dans les environnements à forte densité 
d9obstacles, tout en nécessitant de faibles ressources logiques 
et une faible consommation dynamique. En particulier, le 
générateur de politiques exécutant la stratégie epsilon-
greedydécroissante fonctionne à 552)MHz, utilise 101)LUTs, 
64)FFs, et consomme seulement 15)mW. Dans le cadre de 
travaux futurs, cette approche sera évaluée pour les 
algorithmes d9apprentissage par renforcement fondés sur la 
fonction de valeur. 
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Résumé—Les entorses de la cheville sont des blessures spor-
tives courantes qui peuvent évoluer vers l’instabilité latérale
chronique de la cheville. Cette étude propose une méthode non
invasive basée sur la spectroscopie proche infrarouge (NIRS)
pour évaluer objectivement l’état des ligaments de la cheville.
Un modèle de tissu multicouche centré sur le Ligament Talo-
Fibulaire Antérieur (LTFA) a été construit, et des simulations
optiques ont validé la pénétration suffisante des photons en
réflexion. Des mesures préliminaires de réflectance sur quelques
sujets ont montré que les ligaments sains avaient une réflectance
plus élevée que les ligaments blessés dans des conditions exemptes
d’œdème. Ces résultats confirment le potentiel du NIRS pour
le développement d’outils de diagnostic portables et de faible
puissance pour l’évaluation de l’intégrité des ligaments.

Mots clés—Instabilité de la cheville, système de diagnostic
embarqué, système de surveillance des ligaments, NIRS

I. INTRODUCTION

Les entorses de la cheville représentent environ 15 % à 25 %
des blessures liées au sport [1, 2]. Une part importante de ces
cas peut évoluer vers l’instabilité latérale chronique de la che-
ville (CLAI, Chronic Lateral Ankle Instability) [3, 4], caracté-
risée par une instabilité récurrente et une gêne fonctionnelle.
Bien que la reconstruction chirurgicale soit souvent efficace,
les évaluations cliniques actuelles reposent principalement sur
des questionnaires [5] et sur l’imagerie (radiographies, IRM,
etc.), qui présentent des limites notables en termes d’évaluation
dynamique [6], sensibilité et dépendance à l’opérateur [7–9].

La spectroscopie proche infrarouge (NIRS, Near-InfraRed

Spectroscopy), une méthode optique non invasive utilisée dans
les diagnostics biomédicaux, est prometteuse pour l’évaluation
de l’intégrité des ligaments [10–13]. Cet article explore une
approche NIRS pour l’évaluation non invasive et objective
des ligaments de la cheville, afin de soutenir l’évaluation
postopératoire et inspirer le développement de systèmes de
diagnostic embarqués.

II. MODÉLISATION

La structure anatomique du ligament latéral de la cheville,
comme le montre la Fig. 1a, comprend différents ligaments
[14], dont le Ligament Talo-Fibulaire Antérieur (LTFA). Ce
ligament est le plus souvent blessé en raison de sa position et
de sa fonction lors de la flexion plantaire [15–17].

Ce projet a été financé par le CNRS dans le cadre des programmes
interdisciplinaires MITI, la recherche exploratoire et avec le soutien de l’IUIS.

(a) (b)

FIGURE 1 – (a) Anatomie des ligaments latéraux de la cheville [2] ;
(b) Disposition expérimentale pour la mesure du LTFA.

Pour étudier la faisabilité du NIRS dans l’évaluation de
la fonction ligamentaire, un modèle détaillé de tissu multi-
couche a été construit sur la base des propriétés anatomiques
et optiques [18–20]. Des simulations de Monte-Carlo ont été
utilisées pour analyser la propagation des photons dans cette
structure en couches en réflexion. Les résultats ont montré que
les photons peuvent atteindre la couche du LTFA et en revenir
[19], confirmant que les signaux réfléchis peuvent véhiculer
des informations pertinentes sur l’intégrité du ligament. La
distribution des trajectoires des photons a également permis
de déterminer les distances entre la source et le détecteur,
contribuant ainsi à optimiser la conception expérimentale.

III. MÉTHODES EXPÉRIMENTALES

AvaLight-HAL (Avantes, Pays-Bas), une source halogène
compacte et stable, a été utilisée comme source lumineuse.
La réflectance spectrale a été acquise par un spectromètre
AvaSpec-2048XL avec une plage de détection de 450 à 1160
nm, qui a été utilisé pour mesurer la réflectance de la cheville
autour du LTFA. Les données ont été traitées par le logiciel
AvaSoft (v8.16).

Les mesures ont été effectuées sur cinq sujets à l’aide d’une
installation standardisée, afin de minimiser les interférences de
la lumière ambiante. Une sonde à fibre optique a été placée
en percutané à l’emplacement anatomique du LTFA, comme
illustré à la Fig. 1b. La réflectance bilatérale du ligament a été
mesurée.



FIGURE 2 – Analyse bilatérale de la réflectance au niveau du LTFA.

IV. RÉSULTATS ET ANALYSE

Fig. 2 montre une distribution symétrique de la réflectivité
bilatérale des chevilles chez quatre des cinq sujets, ce qui
indique que leurs structures ligamentaires étaient dans un état
considéré comme normal. Le cinquième sujet présentait une
asymétrie notable due à une blessure antérieure. La réflectance
était généralement plus élevée dans les ligaments sains, ce
qui s’explique par leur structure tissulaire plus dense et plus
uniforme. En revanche, les ligaments blessés présentaient une
réflectance plus faible, liée à l’altération des fibres de collagène
et à une diffusion accrue.

En outre, l’absence d’œdème a été contrôlée afin d’isoler
les effets spécifiques aux ligaments sur les signaux NIRS,
conformément aux directives médicales suggérant d’éviter
l’évaluation de la phase aiguë.

Ces résultats suggèrent que le NIRS peut servir d’outil fiable
pour déduire l’intégrité structurelle des tissus mous tels que
les ligaments. Malgré la petite taille de l’échantillon, cette
expérience fournit des preuves encourageantes de la sensibilité
du NIRS aux changements biomécaniques des ligaments, no-
tamment en conditions post-traumatiques ou post-opératoires.

V. APPROCHE DU DÉVELOPPEMENT DE SYSTÈMES

A. Sélection de Composants Opto-électroniques

Bien que le système Avantes ait validé le principe d’utili-
sation du NIRS pour l’évaluation des ligaments, sa taille, sa
complexité et sa consommation d’énergie en limitent l’usage
dans des scénarios portables. Par conséquent, nous avons
sélectionné des composants plus appropriés pour construire
un système embarqué dédié.

Pour la photodétection, la photodiode à double bande Thor-
labs DSD2 a été choisie pour sa large sensibilité spectrale
(400-1800 nm), rendue possible par sa structure double (sili-
cium et d’arséniure d’indium-gallium). Au départ, un ampli-
ficateur SR570 (Stanford Research Systems, États-Unis) a été
utilisé pour convertir le photocourant en tension. Cependant,
en raison de son grand facteur de forme et de son manque de
capacité d’intégration, nous avons développé un amplificateur
de transimpédance (TIA, Trans-Impedance Amplifier) sur me-
sure. Ce TIA présente des paramètres programmables de gain
et temps de réponse, permettant une adaptation dynamique à

des conditions lumineuses et des longueurs d’onde variables. Il
permet de conserver un rapport signal-bruit suffisamment élevé
et de garantir une détection précise de l’état des ligaments dans
l’ensemble des plages spectrales concernées.

Concernant les sources lumineuses, des LED NIR et SWIR
(Short-Wavelength IR) ont été sélectionnées sur la base
d’études antérieures et de performances figurant sur les fiches
techniques. Leur intégration modulaire permet l’extension
future du système à différents types de tissus ou de conditions.

B. Proposition de Système Embarqué

L’architecture du système intégré comprend un microcon-
trôleur central qui coordonne l’intensité lumineuse à l’aide de
potentiomètres numériques, en pilotant des LED à longueurs
d’onde multiples en mode pulsé. La photodiode DSD2 reçoit
les signaux réfléchis, qui sont ensuite amplifiés, filtrés et nu-
mérisés au moyen d’un Convertisseur Analogique-Numérique
(CAN) multicanal à haute résolution. Des taux d’échantillon-
nage supérieurs à 100 Hz et une résolution d’au moins 12 bits
garantissent la fidélité du signal. Les données traitées seront
télétransmises à une station de base distante pour un contrôle
et une analyse en quasi temps réel.

VI. CONCLUSION

Cette étude a validé la faisabilité de l’utilisation du NIRS
pour évaluer la fonction des ligaments chez les patients CLAI.
Les données spectrales ont montré que les ligaments sains
présentaient une réflectance plus élevée que les ligaments
blessés, ce qui reflète les différences dans la structure des
tissus. Un système embarqué de faible puissance a été proposé,
intégrant un microcontrôleur, une photodiode à double bande
et un double TIA reconfigurable, permettant une surveillance
en temps réel et portable des tissus biologiques.

Malgré la taille limitée de l’échantillon, les résultats en-
courageants posent les bases du développement d’outils de
diagnostic précis et portables. Ce cadre offre une solution
prometteuse pour l’évaluation postopératoire objective et le
traitement personnalisé des lésions ligamentaires.
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Abstract—This paper provides an overview of AI algorithms
and hardware accelerators. We examine AI algorithms focusing
on their computational needs and areas of application. Fur-
thermore, we analyze various AI accelerators, highlighting their
flexibility, and suitability for different AI workloads.
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Hardware Design

I. INTRODUCTION

Artificial Intelligence (AI) algorithms are now fundamental

to a variety of applications, including image recognition, natu-

ral language processing, speech recognition, and autonomous

driving. Each algorithm has distinct computational and mem-

ory access patterns, posing challenges when deployed on hard-

ware. This paper explores these challenges by outlining the

requirements for designing a flexible edge architecture capable

of efficiently supporting a wide range of AI applications.

II. AI ALGORITHMS

A Multilayer Perceptron (MLP) is a feedforward neural net-

work consisting of an input layer, one or more hidden layers,

and an output layer. It processes inputs by performing matrix-

vector multiplications, essentially a series of dot products,

followed by nonlinear activation functions. This allows the

network to learn and represent complex patterns in the data.

Convolutional Neural Networks (CNNs) [1] are neural net-

works specifically designed for image processing tasks. They

use convolutional layers to apply filters that detect visual

patterns such as edges and textures through dot product

operations. Pooling layers, based on either comparisons or

averaging, are used to reduce dimensionality while retaining

important features. ReLU is the most commonly used activa-

tion function in CNNs. This structure effectively transforms

raw images into compact feature representations suitable for

tasks like classification.

Recurrent Neural Networks (RNNs) [2] are used for sequential

data. Unlike MLPs, RNNs have a feedback loop, where each

hidden layer receives input from both the previous layer and its

prior state, allowing it to capture temporal patterns. This makes

RNNs ideal for tasks like time-series analysis and language

modeling.

This work is supported by France 2030 Priority research program and
equipment for artificial intelligence PEPR AI,under the ref ANR-23-PEIA-
0009.

Fig. 1: Convolutional Neural Network

Fig. 2: Recurrent Neural Network

Long Short-Term Memory (LSTM) networks [2] enhance

standard RNNs by effectively handling long-term dependen-

cies in sequential data. They incorporate memory cells along

with input, forget, and output gates, and use element-wise

(Hadamard) multiplication to regulate information flow. This

design allows the network to preserve important information

across extended sequences. Common activation functions used

in LSTMs include sigmoid and tanh.

Fig. 3: Recurrent Neural Network

Transformers [3] are advanced neural network architectures

designed for sequence-based tasks. Unlike RNNs and LSTMs

that handle data sequentially, Transformers use self-attention



Fig. 4: Transformer neural network

mechanisms built on matrix multiplications and softmax oper-

ations to process entire input sequences in parallel. This makes

them highly efficient for applications such as natural language

processing.

III. HARDWARE ACCELERATORS FOR AI

NVIDIA’s general-purpose GPUs offer strong flexibility and

parallelism through their Single Instruction Multiple Thread

(SIMT) architecture. Ampere based GPUs [4], for example,

feature multiple Streaming Multiprocessors (SMs), each run-

ning 128 threads in parallel ideal for large scale, data parallel

tasks. However, this performance comes at a cost. GPUs

consume more power than specialized accelerators and, while

efficient for batch processing, can introduce higher latency,

making them less suitable for real-time inference.

Google’s Tensor Processing Units (TPUs) [5] are AI ac-

celerators built for efficient machine learning, using large

systolic arrays for fast matrix operations. However, their fixed

architecture can limit performance for algorithms with irreg-

ular computations. Early versions used hardwired activation

functions and 8-bit data types, reducing flexibility. Newer

TPUs address this with general-purpose vector processors and

support for bfloat16, making them better suited for large-scale

cloud and data center deployments.

Field-Programmable Gate Array (FPGA) SoCs provide high

flexibility through reconfigurable fabric, including resources

like LUTs, BRAMs, and DSPs, allowing bit-level customiza-

tion and support for various data types. However, larger data

types like float32 consume more resources and introduce

higher latency. These devices also include multi-core CPUs

and external memory controllers for hybrid hardware-software

designs. Implementing an FPGA-based solution requires gen-

erating a bitstream via synthesis and place-and-route pro-

cesses. Modern FPGA SoCs support Dynamic Partial Recon-

figuration (DPR), enabling specific regions to be reconfigured

at runtime without affecting the rest of the system. While this

improves resource utilization and adaptability, DPR remains

slow, typically taking several milliseconds due to limitations

in current reconfiguration controller speeds.

A. Requirement for the proposed architecture

The target architecture should be able to dynamically adapt

to a variety of AI algorithms, such as MLPs, CNNs, LSTMs,

Transformers, etc., by utilizing fast and efficient dynamic

reconfiguration to perform different arithmetic operations (e.g.,

matrix-vector multiplication, Hadamard product, pooling, soft-

max). It must also support a wide range of nonlinear activation

functions (e.g., Sigmoid, Tanh, ReLU, GELU) through ap-

proximations with configurable error tolerances. Furthermore,

the architecture must be compatible with multiple data types,

including float32, float16, bfloat16, float8, fixed-point, and

int8, to ensure computational flexibility. Lastly, it should be

energy-efficient to facilitate integration into power-constrained

edge environments.

IV. CONCLUSION

In conclusion, AI algorithms differ in their computational

and memory patterns, posing challenges for hardware imple-

mentation. While GPUs and TPUs support a wide range of

models, they are not ideal for edge environments. FPGAs offer

reconfigurability but at the cost of high overhead. Existing

edge accelerators lack the flexibility to support diverse algo-

rithms and data types. This thesis aims to develop a generic,

edge-focused AI accelerator that supports multiple AI models,

activation functions, and data types
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Abstract—This work presents the design and implementation of a
Growing Neural Gas (GnG) model using an array of neurons intercon-
nected via a Network-on-Chip (NoC) for efficient inter-neuron commu-
nication. The proposed architecture is scalable and enables independent
control of individual neurons, allowing the simultaneous processing of
multiple application vectors. These features, combined with the GnG
model, provide the system with Continual Learning capabilities allowing
to adapt to statistical variations of incoming data. The design is validated
through SystemC simulation and described in VHDL for hardware
implementation.
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tor quantization, continual learning, incremental learning, Growing
Neural Gas (GNG).

I. INTRODUCTION

Machine Learning (ML) and Neural Networks (NN) are powerful

tools for extracting insights from data but require significant compu-

tational resources, making them challenging to deploy in embedded

systems. Additionally, traditional deep learning models struggle with

changing data distributions, leading to performance degradation [1].

Continual learning methods, such as replay-based techniques,

resource allocation, and regularization [2], [3], attempt to address this

issue but often require extensive resources or reduce model adapt-

ability. Prototype-based models, like Self-Organizing Maps (SOM)

and their variants (GNG, GWR), offer a promising alternative by

maintaining plasticity and mitigating catastrophic forgetting [4], [5].

Among these, dynamic models like Growing Neural Gas (GNG)

and Growing-When-Required (GWR) excel in evolving environments

but lack scalable hardware implementations. Existing FPGA-based

solutions [6]–[8] are limited in neuron capacity or rely on simplified

designs, restricting their use in continual learning.

This work introduces a scalable hardware architecture capable of

hosting and training multiple GNG graphs simultaneously, enhanc-

ing neuron utilization and enabling continual learning. This paper

details the proposed approach in Section II, the implementation in

Section III, the validation and experimental results in Section IV,

and concludes with future research directions in Section V.

II. CONTINUAL LEARNING WITH GROWING NEURAL GAS

The proposed work presents a continual learning approach summa-

rized in Algorithm 1, where input data X is processed sequentially,

detecting changes in its probability distribution pt(X, ¹t) over time.

The Growing Neural Gas (GNG) algorithm is used as a mapping

function F (line 4), dynamically adjusting the network structure to

evolving data patterns. Initially, data is mapped to a graph G1, which

is continuously compared with new inputs. If significant changes are

detected, either a new mapping is created or an existing one is recalled

from a set of stored graphs Γ.

GNG, introduced by Fritzke in 1994 [9], a flexible self-organizing

neural model [10], allows neurons to evolve dynamically, forming a

graph structure rather than a fixed grid. It identifies the two closest

neurons BMUs (Best Matching Units), updates the connections, re-

moves outdated edges, and inserts new neurons in high-error regions

to improve data quantization.

Algorithm 1: Continual learning approach

1 Input: X , pt(X, ¹t), ϵ
2 Output: Γ
3 Γ← ∅
4 ΠG1

(X) = {F (xi)|xi ∈ X, p(xi) = pt1(X, ¹t1)}
5 Γ← Γ ∪ G1

6 while X do

7 if D(pt(X, ¹t), pt−1(X, ¹t−1)) > ϵ then

8 if ∄ΠGj
(X), pt(X, ¹t) = pj(X, ¹j), Gj ∈ Γ then

9 ΠGk
(X) = {F (xi)|xi ∈ X, p(xi) = pt(X, ¹t)}

10 Γ← Γ ∪ Gk

11 return Γ

pdf - probability density function

X - input data set

pt(X, ¹t) - time-variant pdf of X with time-variant parameters ¹t
F - a function mapping X onto graph G (i.e. GNG)

Γ - a set of graphs

ΠG1
(X) - projection of X on graph G1 built with the function F

D(pt(X, ¹t), pt−1(X, ¹t−1)) - metrics to compare pt and pt−1

ϵ - threshold indicating the change in X (based on the comparison of pdfs)

To support this continual learning framework, a hardware architec-

ture is proposed for managing multiple GNG graphs in parallel thus,

enabling real-time training and adaptation to dynamic environments.

III. MULTI GNG GRAPH HARDWARE ARCHITECTURE

The SWAP-GNG architecture is a NoC-based system designed for

multi-GNG graph learning. Each neuron is connected through a NoC

router, enabling flexible communication and all-to-all connectivity.

A key feature is the ability to share neurons across multiple graphs

through shared weight memory organization, allowing inference or

training on multiple graphs simultaneously.

The architecture supports independent and parallel learning of

multiple graphs while maintaining access to previously trained ones.

It consists of three layers as shown in Fig. 1: the Neural Layer

(NL), responsible for distance computation, BMU search, and edge

management; the NoC layer, handling communication via a 2D mesh

NoC using XY routing and messages acknowledgment for neuron oc-

cupancy; and the GNG Manager (GNGM), which supervises network

initialization, input dispatching, and neuron growth.

Learning iterations involve sequential squared Euclidean distance

computations, BMU searches, and edge updates, with execution times

depending on network size and neuron count. The NoC efficiently

routes messages for neuron interactions, while a unique graph code

ensures correct memory access and offsets (Fig. 1) during computa-

tions.



Figure 1: (a) SWAP-GNG architecture (b) Weight memory organization

IV. RESULTS

The proposed architecture is designed with VHDL at the RTL level

for FPGA synthesis but also validated through SystemC simulations.

A continual learning scenario involving three sequentially learned

graphs is used to test its effectiveness, with input data representing

geometric shapes: a rectangle, a triangle, and a circle. Data points are

fed into the architecture sequentially, and neuron weights are adjusted

dynamically to match the underlying data distributions.

Results in Fig. 2 show that neurons initially distribute sparsely

but progressively align with the input data, capturing the geometric

structures. Even though learning occurs sequentially, all trained

graphs remain stored and can be retrieved for further learning or

inference. The architecture, implemented as SWAP-GNG, achieves a

maximum frequency of 66.6 MHz on a Xilinx XC7Z020CLG484-

1 FPGA and efficiently utilizes BRAM for storage and DSP for

computations (Table I).

The ability to handle multiple graphs simultaneously while adapt-

ing to evolving data distributions highlights the flexibility and ef-

ficiency of SWAP-GNG. It enables independent learning processes

to start at any time and integrates new knowledge dynamically when

statistical changes in data occur, making it ideal for continual learning

environments.

V. CONCLUSION

This work presents a novel architecture utilizing a Growing Neural

Gas (GNG) neural network as the foundation for continual learning.

The design employs a memory-shared approach to minimize hard-

ware overhead while enabling the implementation of multiple GNG

graphs. It is highly connected, scalable, and distributed, allowing

Figure 2: SWAP-GNG graphs for three different geometric-shaped

data distributions.

simultaneous learning of diverse data distributions, making it well-

suited for continual learning. The proposed architecture is validated

through SystemC simulations and VHDL synthesis for performance

analysis. Future work includes experimental validation and applica-

tion in real-world scenarios as well as the exploration of advanced

distance metrics for graph comparison.

Table I: Synthesis results on Xilinx XC7Z020CLG484-1

for one neuron/router pair.

Resources Total Total%
Proposed arch.

Neuron Router

# of Slice LUTs 1853 0.03% 64% 36%

# of Slice FF 1261 0.01% 50% 50%

# of DSP 2 0.009% 100% 0

# of BRAM 2 0.014% 100% 0
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Abstract—Evaluating the reliability of deep neural network
(DNN) applications is essential for deploying artificial intelligence
(AI) on safety-critical embedded systems. This work presents
a novel methodology for assessing reliability of DNN models
deployed on Microcontrollers using software-level fault injection.
A new tool, called MicroFI, was proposed and validated with two
case studies, providing a comparative analysis of DNN reliability
versus register and memory bit flips, induced by transient faults.

Index Terms—Neural Networks, Fault Tolerance, Fault Detec-
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I. INTRODUCTION

Deep neural networks (DNNs) are among the most used

predictive models in Machine Learning (ML), excelling in

many complex computational tasks. These high demanding

applications require processing large volumes of sensor data,

posing significant challenges in power consumption, latency,

and security when relying on cloud-based computation. To

address these constraints, there is a growing shift toward data

processing at the edge. Tiny machine learning (TinyML) has

emerged as a promising field to integrate ML capabilities into

resource-constrained embedded platforms.

The growing adoption of TinyML further drove the devel-

opment of LiteRT for Microcontrollers (TFLM), a specialized

version of TensorFlow (TF), designed to run ML models

efficiently on resource-constrained devices by minimizing

memory usage and processing demands, running computations

on optimized C and assembly.

Faults caused by ionizing radiation occurring post-training

can significantly disrupt system functionality [1]. They may re-

sult in prediction errors that degrade application performance,

posing serious risks in critical scenarios [2]. Ensuring the relia-

bility of HW-AI systems is therefore essential, particularly for

safety-critical and mission-critical applications where failures

could endanger human health.

The strong interest to assess the reliability of commer-

cial off-the-shelf (COTS) boards, allied with the constraints

from cloud-based computing systems, plays a critical role

in enabling scalable and cost-effective HW-AI deployments.

This work is motivated by the needs of the industry to

evaluate and improve the reliability of AI applications on

embedded platforms. The existing frameworks in the literature

are designed for specific use cases and do not address general

reliability assessment of DNN models deployed on TFLM. So

we developed MicroFI, a fast and configurable framework for

runtime Fault Injection (FI) on TFLM.

II. METHODOLOGY

TensorFlow models were defined and compiled using Keras

operations in Python. Training was conducted on the MNIST

dataset - where handwritten numbers are ranked in 10 classes.

The target hardware platform is the ESP32C3-Mini-1, a mod-

ern single-core microcontroller from Espressif.

A. MemoryFI

MemoryFI is the first core feature of MicroFI, designed to

inject transient faults into the FlatBuffer stored in the device’s

DRAM. This enables targeted manipulation of parameters such

as kernels, weights, biases, and other model components.

By leveraging the topology of the neural network, users

can specify tensor names or indices as targets, and generate

associated fault lists, streamlining the fault injection setup.

At runtime, MicroFI accesses the designated memory ad-

dress corresponding to a specific tensor and introduces a tran-

sient fault - a single bit flip - immediately before the operation.

After the operation is completed, the bit is restored to its

original state to accommodate truthful transient injection for

possible time redundant layers or parameter reuse, this opera-

tion monitoring functionality was achieved by inserting a small

block of code on the TFLM micro interpreter library. The

MemoryFI method is fully compatible with any TensorFlow

Lite model, requiring no modifications to the model itself.

Intrusion is minimal, and the runtime overhead was calculated

to be around 182 CPU cycles, or 1.1µs for the ESP32C3’s

160MHz CPU, making it an effective and practical tool for

fault injection in resource-constrained embedded systems.

B. RegisterFI

RegisterFI introduces transient faults directly during in-

ference, targeting intermediate values, input tensors, output

tensors, as well as control flow data structure at the level of

the CPU registers.

In an embedded system, when a task is interrupted, the

kernel saves its execution context, including register values,

stack, and program counter. Upon resumption, its context is

restored to ensure the task can continue from where it left

off. The process of saving and restoring a task’s context is

known as context switching. This mechanism is fundamental

to multitasking systems, and a simplified version also applies

to function calls. The stack pointer indicates the memory

location where the function’s stack resides, allowing access

to saved register values.
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RegisterFI exploits context switching to introduce faults

during inference. To achieve this, the esp_timer component

from the ESP-IDF framework was used to configure a one-shot

high-resolution timer. A one-shot timer is a timer that triggers

an ISR after a predefined interval, executing its callback

function only once.

The duration of each operation is profiled and saved during

golden inferences. Operation monitoring was implemented in

the micro interpreter, function responsible for managing the

inference. The FI sequence initiates as soon as the target

operation begins, RegisterFI starts a one-shot timer for a

random time within the duration of the operation. When

the timer expires, it triggers a context switch, interrupting

the inference and executing the timer’s callback function.

The callback accesses the stack in memory where the last

function’s register are stored. It then flips a random bit in

one of the 32-bit saved register values. The inference is

resumed from the instruction it was interrupted, and the

modified register value is reloaded into the CPU registers. The

injected fault then propagates through the operator, the graph,

and subsequent layers, simulating the real-world effects of a

transient fault [1]. The measured runtime overhead for each

injection, including operation monitoring, timer set up, bit flip,

and context switching is around 1300 CPU cycles, or 8.1µs

for the tested CPU.

To evaluate the behavior of a DNN under fault injection, Mi-

croFI analyzes the predicted outputs of a faulty model against

a fault-free baseline called golden model. Faulty predictions

are classified as per the methodology adapted from [2], with

few additions.

III. RESULTS AND DISCUSSION

The minimum overhead added by the framework - 1300

cycles or 8.1µs for RegisterFI and 182 cycles or 1.1µs

for MemoryFI can be compared with other solutions, such

as the GDB. The GDB overhead can be roughly estimated

for ESP-PROG, Espressif’s debugging board. It offers JTAG

communication with the ESP32C3 and serial communication

with the computer. MicroFI can be three orders of magnitude

faster than debugging solutions.

In the first case study, we analyze LeNet5 [3], with 3

cConvolutional layers (Conv) and 2 fully connected layers

(FC), using both MemoryFI and RegisterFI. Conv1 exhib-

ited the highest proportion of Critical faults in both cases,

highlighting its vulnerability during the early stages of feature

extraction. However, on MemoryFI campaign, Conv1 showed

about 4 times more faults than the other convolutional layers,

while on RegisterFI campaign, Conv2 was almost as faulty as

Conv1, which still had twice the number of faults compared

to Conv3. From memory to register faults, Conv2 became

less resilient than both FCs. It is worth noting that 41.9%

of Observed faults in the memory were actually beneficial

to model accuracy, with 42.1% classified as Acceptable. In

contrast, 21.6% of the Observed register faults were classified

as Critical. Register faults reduced accuracy to 96.04%, a drop

of 3.16% from the golden accuracy. Memory faults caused

a smaller reduction, with a loss of 0.28% to a baseline of

98.00%.

This assessment illustrates the sensitivity of the CPU reg-

isters and highlights how FIs during calculations significantly

impact the overall system reliability, when compared to FIs

on the parameters. It is then imperative to inject faults in

the registers to have a trustful evaluation of system reliability.

In the next section, results compare a variety of DNNs on a

RegisterFI campaign.

The second case study uses LeNet5 [3], LCNN [4] with 4

Conv and 2 FC, and a modified version of TinyVGG [5] with

6 Conv and 4 FC with reduced parameters.

Fault masking is extremely high for LCNN, with 99.89% or

more faults being masked in all layers, showing strong inherent

resilience to register faults. It is also the largest model, with

275KB, versus 127KB of M-TinyVGG, and 98KB of LeNet-5

for the .tflite file. However, reliability is not only dictated

by parameter count, as we can see with LeNet-5, which had an

accuracy loss of 4.14% against 8.94% of the 30% larger M-

TinyVGG, the number of layers play a role in increasing the

failure rate for the last Conv layers of the model. M-TinyVGG

also had more Critical faults, with 19.59% compared to 7.56%

of LeNet-5. Comparing the LeNet-5 performance between

both case studies, one can raise the hypothesis that its FC

layers are more prone to fail in more difficult datasets, such

as Fashion MNIST.

Crashes are substantial, and make up for 48% of all Ob-

served faults, followed by Critical faults with 21%. FC layers

are often more susceptible to Critical faults and Crashes than

convolutional layers, likely due to the dense interconnections

and reliance on precise register values. Another takeaway is

that having fewer layers with more parameters leads to a more

robust network.

In this study, we introduced a novel methodology for

evaluating the reliability of DNN applications on TensorFlow

Lite for Microcontrollers using SFI. This methodology was

embodied in a specialized tool named MicroFI, designed to

inject faults in both memory and CPU registers during runtime

with minimum overhead. Results demonstrated how memory

faults compares to register faults on a RISC-V ESP32C3,

revealing the importance of a hardware-aware CPU fault

injection to reliability assessment.
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Abstract—This paper presents a novel system for reading a
resonant intracranial passive sensor dedicated to monitoring
the intracranial pressure. This sensor is remotely excited by
a Voltage-Controlled Oscillator and its impedance is accurately
read via a coupled coil, that leads back to the pressure value. The
proposed system utilizes a fully analog, low-cost design, making
it a promising solution for future medical applications requiring
real-time intracranial pressure monitoring.

Index Terms—Intracranial Pressure, LC Sensor, Impedance
Reader, Embedded System, Wireless Sensing

I. INTRODUCTION

Intracranial pressure (ICP) is the pressure exerted by the

cerebrospinal fluid, blood and brain tissue on the rigid skull

[1]. An increase in ICP is a life threatening problem. It can

occur after traumatic brain injury, brain cancer, stroke, in

neurodegenerative disease or even during exposure to changes

in gravity such as spaceflight. Normal ranges of ICP is 5-15

mmHg (7-20 mbar) [2], whereby the Brain Trauma Foundation

recommends treatment for ICP above 20 mmHg. ICP values

are not stable but form pulsatile waves (amplitude around 1

mmHg). It also depend on the head position, body temperature

and even oxygenation status. Continuous and sensitive ICP

monitoring is critical for better diagnosis and surveillance.

It facilitates brain injury evaluation, treatment efficacy, and

patient survival.

Today, ICP measurement requires the implantation of a

wired pressure sensor directly in the skull [3]. Indirect methods

– based on external measurements – do not provide informa-

tion sufficiently relevant or accurate for diagnosis [4]. Gold

standard ICP sensors are based on a wired piezoelectrical pres-

sure sensor that are bulky and highly invasive for implantation.

These are important constraints for clinical use, and -to date-

are unsuitable for use in research models that often employ

rodents. In this last case, a less invasive implantable ICP sensor

of a maximum size of 9 mm2 is required. These researches

would enable better comprehension of the functioning and

regulation of ICP.

Our main objective in the framework of the ANR WISPerS

project is to design an external autonomous and battery free,

cutaneous wearable patch to interrogate a passive transducer

wirelessly.

II. INTRACRANIAL PRESSURE MEASUREMENT

A. Sensor principle

Micro-electromechanical system (MEMS) are ubiquitous in

many applications, but are economically viable only in large-

scale production. With emerging 3D-printing technologies,

MEMS rapid prototyping can be done, using various principles

(e.g. fused material deposition, stereo-lithography, 2-photon

stereo-lithography, etc.). The targeted passive transducer, com-

posed of a planar coil, two electrodes in a capacitor configu-

ration and bundled in a bio-compatible substrate, will act as

an LC sensor operating at its modulated resonant frequency,

which leads back to the ICP.

Keeping the resonant frequency, defined by fres =
1

2π
√

LC
,

under 100 MHz allows signals to pass through the skull

and skin more easily than at higher frequencies, increasing

its resilience. Unfortunately, constraints in size and working

frequency leads to a coil low quality factor (Q), meaning

optimization on its design and readout system is crucial.

B. Inductive reader system principle

To interrogate this passive transducer using coupled coil

mechanisms, different techniques can be used, such as phase

[5] or real [6], [7] part measurement of reader coil impedance,

a combination of both [8], as well as time-domain measure-

ments [9], [10].

As our system needs to be independent from the coupling

factor k (see Fig.1) because of changes in distance and mis-

alignment between sensor’s and reader’s coils, measurement

of the real part at reader’s coil is well suited as it only acts as

an amplitude factor:

Re(Zreader)max = Rs + 2πfresLsensork
2Q (1)

III. LC TANK RESONANT FREQUENCY MEASUREMENT

A. Impedance measurement

Most readout circuit nowadays operates on lower/higher fre-

quency range [11], [12] , or have too high power consumption

[6]. We propose a full-analog impedance reader, based on

a voltage controlled oscillator (VCO), a low noise amplifier

(LNA), a low-pass filter (LPF) and a peak detector, tested

with an Arduino with integrated analog-to-digital (ADC) and
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Fig. 1: Project’s architecture overview

digital-to-analog (DAC) for a proof-of-concept (see Fig.2).

Tests were done using commercial, fixed k, coupled coils with

different capacitor and compared with reference measurements

obtained with a vector network analyzer (VNA) at the reader’s

coil ports (see Fig.3).
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Arduino
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Fig. 2: Analog readout system connected to an Arduino
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Fig. 3: Comparison between the variation of the voltage

measured with the home-made (HM) analog readout system

(blue) and Re(Zreader) measured with a VNA (orange) at the

output ports of the reader coil for different capacitor values

Experimental results have confirmed that the voltage mea-

surements obtained with the proposed analog readout system

and Re(Zreader) acquired with the VNA have the same shape,

but inverted, with a shift caused by coils differences used on

home-made and reference board. The frequency differential

between the two systems exhibits a ∼20 kHz deviation (see

Fig.3), leading to a relative precision of 0.1 mmHg with the

final sensor theoretical characteristics (200 kHz / mmHg).

Custom coils with a constant inductance across the specified

frequency range must be fabricated to facilitate the testing

of absolute value measurements, as opposed to relative mea-

surements. Additionally, enhancements in the VCO frequency

range, while keeping a high step resolution, are required to

achieve an expanded ICP measurement. Integration on a low-

power micro-controller that uses energy harvesting and low

energy data transmission protocol are the next steps for this

system.

B. Coil optimization

Current works are done on planar coil design optimization,

in order to test our system with different k and Q factors, be-

tween multiple medium to simulate skull and skin permittivity.

Self resonant frequency (SRF) of sensor and reader proto-

type coils needs to be as high as possible, while complying

within our constraints of size and manufacturing process. As

fres is a function of L and C, minimizing variations in L

across the frequency range is essential for precise ICP retrieval.

IV. CONCLUSION

Low power embedded readout sensor for low coupling

capacitive sensor used in biomedical applications allows pa-

tients to have more freedom during healing process. Our

system, coupled with optimized data transmission and energy

harvesting, could achieve this, leading to further research on

brain injuries and regulatory mechanisms. Further work will be

done on a more compact integration (flexible substrate, ASIC,

etc.) and better reliability under low coupling conditions.
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Abstract—In this paper, a low-power multiplier-less artificial
neural network implementation is proposed. Reduced area and
power consumption are achieved through the combination of
a multiplier-less neuron unit, the use of a digital in-memory
computing (DIMC) architecture of the neuron, and the imple-
mentation of a multi-layer network as a single iterative layer
scheme. A 32x32x32x32 (4 layers of 32 neurons) feedforward fully
connected network (FNN) has been fabricated in 28nm FDSOI
CMOS. Measurement results show up to 24.9 8-b TOPS/W
performance for a 1-layer inference and 20.6 TOPS/W for a
4-layer inference as well as a 1.2 8-b TOPS/mm².

I. INTRODUCTION

The implementation of Artificial Intelligence (AI) solutions

is a global trend in the development of biomedical devices

and systems or Intelligence of Things (AIoT) systems, where

numerous devices and data communications are involved.

Artificial Neural Networks (ANN) and their many flavors are a

popular and well-covered AI solution in this context. However,

while the development of the performance and complexity of

ANNs is growing at a high rate, there is a need for solutions

to reduce the on-chip hardware implementation cost [1]. One

major trend is the use of an in-memory computing architecture

that allows high TOPS/W energy performance by limiting the

movement of memory data [2]. The objective of this work is to

integrate a low-power artificial neural network processor on-

chip for long-term health monitoring applications. To achieve

this, a digital in-memory computing architecture is proposed,

combined with an iterative layer scheme for multi-layer infer-

ence. A 32x32x32x32 (4 layers of 32 neurons) fully connected

feedforward network (FNN) has been designed and fabricated

in 28nm FDSOI CMOS.

II. IN-MEMORY COMPUTING SCHEME

In a conventional Von-Neumann architecture most of the

power consumption is implied by the memory data move-

ments: the data are fetched from the memory array and pro-

vided to the processing elements [3], which is time and power

consuming. In a compute-in-memory architecture (CIM), each

memory point has direct access to a processing element inte-

grated within the memory array. CIM addresses the problem

of weight movement with a static weight scheme allowing

significant power reduction and faster operation due to the

absence of fetch operation and weight movement. CIM can be

implemented as analog schemes, which achieve higher energy

Fig. 1: (A) Proposed DIMC macro and write-only SRAM cell (B)
Cascaded and (C) iterative layer scheme for multi-layer inference;
(D) details of the iterative layer

efficiency but are prone to PVT variations and arduous design

challenges [2], [3], or digital in-memory computing schemes

[4], [5], [6] which are less energy efficient but more resilient

to PVT variations.

In this paper, we propose a DIMC neuron macro with

32 8-bit inputs implemented as a SHIFT+ADD processing

architecture. Input activations are fed in parallel to the macro

allowing higher operating frequency and throughput at the cost

of an increased area. The main contributor to complexity is

the weight multiplication. A solution is to use non-uniform

logarithmic power-of-two quantization of the weights [7],

allowing the replacement of multipliers by shifters as well as

the reduction of the weights bit-width and the weight memory

size, leading to a reduction in the complexity of the neuron

implementation cost. The ANNs weights are quantized using

a single POT scheme on 8-bit resolution. Weights-activations

products are then fed to a carry-save adder tree to process

the final accumulated value in a single clock cycle. Minimal-

size SRAM cells are implemented as write-only cells where

the stored values of the weights are directly connected to



the processing elements integrated as close as possible to

the SRAM cells. The proposed DIMC macro is illustrated in

Fig. 1.

III. ITERATIVE LAYER APPROACH

Most of FNN application cases necessitate multi-layer in-

ference. Implementing all the layers on-chip as shown in

Fig. 1 (B) is area and leakage inefficient. An alternative is to

implement only one layer and reload the memory weights for

each layer after each computation, undermining the benefits

of the in-memory computing scheme by re-introducing costly

data movements, thus when computing multiple layer the

performance of such solution would degrade as shown in Fig. 2

(A). We propose to overtake this problem by sharing each

processing element with 4 different memory points related to

4 different layers, and to provide the ability to sequentially

compute the 4 layers without any memory movement, saving

both area and power, as illustrated by Fig. 1 (C) and (D). More

precisely, the iterative layer scheme is based on tri-state logic

buffers on concurrent input/output lines. During the first layer

inference, input tri-state buffers connect the activation inputs

to the neurons. After inference, the neuron’s output results are

stored in a buffer register. The output value of the first layer is

connected to the next layer, by activating the tri-state buffers

and deactivating the input tri-state buffers. Area overhead of

proposed multi-layer scheme degrades TOPS/mm² by 15 %.

IV. MEASUREMENT RESULTS AND SOTA COMPARISON

Measurement results of the fabricated integrated circuits

Fig. 2 (A) highlights the inference performance in both area

and energy efficiency for single and multi layer inference.

The best performance for 1-layer inference is measured for

a clock frequency of 150MHz and a VDD of 0.6V with

24.97 TOPS/W and 1.17 TOPS/mm². In the same conditions

performing successive layers degrades lightly the TOPS/W

performance by 20% for computing up to 4 successive layers

, downgrading to 20.6 TOPS/W, as shown in Fig. 2 (B).

A TOPS/W choropleth scale Schmoo plot of the performed

measurements is provided in Fig. 2 (C).Comparison with state-

of-the-art has been made by gathering multiple DIMC refer-

ences between 16nm-55nm. All DIMC macros from literature

provide performances for 1-layer inference, to estimate their

actual performance when dealing with multiple layers, we

considered the case that SOTA are implemented as a single

macro and it is needed to update iteratively the weights layer

after layer and we recalculated both TOPS/W and TOPS/mm²

by taking into account the memory access cost leading to a

degradation of SOTA performance. Optimum measured results

in 8-bit TOPS/W and 8-bit TOPS/mm² of the fabricated chips

for both 1-layer and 4-layer inference are shown in Fig. 2

(D) along the 1-layer and estimated 4-layer performances of

9 DIMC SOTA references from literature. While the 1-layer

TOPS/W performance reaches the numbers of similar SOTA

references, the solution becomes competitive when dealing

with multi-layer networks, which are needed for most appli-

cations, and even outperforms SOTA for 4-layer inference.

Fig. 2: (A) Cascaded and (B) iterative layer scheme for multi-layer
inference; (C) details of the iterative layer computation

V. CONCLUSION

In this paper, the combination of POT quantization and

the use of an iterative single layer in-memory architecture

are shown as relevant to reduce neural network implemen-

tation cost while keeping high inference performance. A FNN

network of dimensions 32x32x32x32 has been designed in

28nm FDSOI and integrated on-chip. Proposed DIMC macro

performances are 24.9 TOPS/W inference energy efficiency

which reach the levels of similar CIM neuron macros from

the literature while providing flexibility on the network di-

mensions as well as the possibility to compute multi-layer

networks without major degradation of the energy cost with a

reduction of only 20% of the TOPS/W when computing up to

4 successive layers and a reduction of 15% of the TOPS/mm²

outperforming SOTA for multi-layer applications.
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Abstract—Physical Unclonable Functions (PUFs) have emerged
as a promising security solution for electronic devices, but their
reliability remains a critical challenge. This paper investigates
the impact of localized aging on the reliability of Ring Oscillator-
based PUFs (RO-PUFs) implemented on FPGAs. Using a simple
and reproducible aging method, we subjected multiple FPGAs to
controlled heating experiments, targeting regions with active and
inactive Ring Oscillators rather than genuine RO-PUF configu-
rations. Over 11 weeks of heating, significant and distinguishable
aging effects were observed, leading to instability levels up to two
times higher than normal in the RO-PUFs.

I. INTRODUCTION

The emergence of advanced physical attacks, such as X-

ray [1], electromagnetic (EM) [2] [3], and thermal attacks,

has significantly increased the vulnerability of electronic de-

vices necessitating the use of more secure and extremely

costly memory systems to store critical information. One

of the most concerning threats is the possibility of cloning

or replicating a device for malicious purposes. To address

this growing threat, a new solution has emerged: Physical

Unclonable Functions (PUFs). PUFs can be integrated into

any circuit and provide a unique identification key for each

chip without requiring stored information. This is achieved

by exploiting manufacturing process variations to generate

the key [4]. However, while PUFs are considered unclonable,

they are not without vulnerabilities. Environmental factors

such as extreme temperatures, electronic noise, power supply

variations, and aging can negatively impact their reliability.

To mitigate these issues, PUFs often incorporate embedded

solutions to enhance stability. One common countermeasure

involves filtering out unreliable bits during the enrollment

phase. This paper demonstrates that, with minimal resources,

it is possible to induce sufficient aging in a circuit to render

these countermeasures ineffective. Specifically, we conduct a

thermal attack on an FPGA where a RO-PUF is implemented.

Our attack combines two bitstreams: a trusted one, containing

the original PUF, and a malicious one, integrating a heating

module and a replica of the PUF. We show that localized aging

can be induced by manipulating the state of the ROs in the

malicious bitstream. The Section II details the experimental

setup, including the FPGA and attack method. Section III

presents experimental observations. Section IV summarizes the

results.
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II. EXPERIMENTAL SETUP

A. FPGA and RO-PUF

In this study, a 256-bit RO-PUF is implemented, where each

RO comprises 8 stages: a NAND gate, 6 inversion stages, and a

buffer for output. In an FPGA, traditional inverters are replaced

by LUTs (Look-Up Tables) configured to perform inversion

and NAND operations. The frequencies are measured using

internal 31-bit counters, with measurements taken over 0.01-

second intervals. The state machine that manages communi-

cation transmits 64 bits: one bit is used for the comparison

result between the two ROs, while the remaining bits carry the

counter values of the two ROs being compared. The 256 bits

of the RO-PUF are generated by comparing two interdigitated

groups of 256 ROs each. Each oscillator in the first group is

compared with its counterpart in the second group, ensuring

that comparisons are made between nearby ROs.

B. Attack Model

In our attack model, two bitstreams are used: one for the

original PUF and another, the malicious bitstream, which

includes 4,600 SIROs and a replica of the original PUF. In

the replica, group 1 ROs oscillate normally, while group 2

ROs (red) are blocked. This approach, inspired by [5], is

compatible with all FPGA architectures. Unlike prior work

focused on cloning, our goal is to assess the PUF’s reliability

and the effectiveness of filtering techniques under thermal

attack. For the experiment, three FPGAs from the same family

were used: two as reference devices and one subjected to the

attack. The targeted FPGA was exposed to high temperatures

for one week, while the reference FPGAs remained powered

off in the same conditions. Frequencies and responses were

recorded weekly, once the attacked FPGA returned to its

normal temperature, allowing for the observation of thermal

effects over time (Figure 1a).

III. RESULTS AND DISCUSSION

A. Evolution of the PUF frequencies

To improve clarity and highlight the impact of the attack

on RO frequencies, we chose to represent the average RO

frequencies across the three FPGAs. This approach simplifies

the presentation by using averages, making the analysis more

accessible while preserving the data from all FPGAs. In Fig-

ure 1b, the reference FPGAs, which were not attacked, show

stable frequencies. In contrast, the attacked FPGA exhibits
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Fig. 1: (a) The methodology involves subjecting one FPGA to a malicious
bitstream attack, while using two other FPGAs as references. Frequencies are
measured weekly. (b) Shows the evolution of the normalized mean frequencies
of the RO-PUF across the three FPGAs after each week of testing.

(a)

(b)

Fig. 2: Value of 1 is assigned if the |∆F | of a RO is greater than that of
the one it is compared to, and a value of 0 is assigned otherwise, shown for
the attacked FPGA (a) and for one of the reference FPGAs (b).

a significant decrease in frequencies, reaching up to 1.5%

lower than the initial measurement. The same figure also

shows a slight drop in frequencies for the reference FPGAs

between weeks 4 and 6. These variations, likely due to room

temperature changes.

B. Impact on the RO-PUF reliability

The two groups of ROs in the malicious bitstream were

programmed differently (as explained in section II-B). Group

1 continued oscillating during the entire attack period, while

the ROs in group 2 were frozen and did not oscillate. This

difference in behavior results in non-uniform aging across the

ROs. Additionally, the temperature generated by the SIROs

is not uniformly distributed, emphasizing the crucial role of

the ROs’ placement in the system’s overall behavior. A binary

heatmap was generated. The principle is as follows: for each

pair of ROs, if the frequency decrease of the oscillating RO

(e.g., X16Y49) is greater than that of the static RO (X16Y48),

the RO is classified as 1; otherwise, it is classified as 0. This

comparison process is applied to all pairs of ROs, allowing

the differences in aging to be visualized in the form of a

binary map. In Figure 2a, corresponding to the attacked FPGA,

distinct lines are visible, indicating areas of the circuit that

have undergone more significant aging. These lines mark re-

gions where the ROs remained active during the attack phase,

showing greater degradation, while areas with less activity

are less affected. In contrast, Figure 2b, representing one of

the reference FPGAs, shows a uniform distribution of bits
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Fig. 3: (a) Methodology used to calculate the number of bit flips and
their corresponding indexes, using the initial measurement from week 0 as a
reference. (b) Maximum number of bit flips recorded over the testing weeks
for the three FPGAs.

without any distinct lines. This clearly illustrates that the aging

effect is mostly localized, although not perfectly so. The slight

inconsistencies observed are likely due to the relatively short

aging period of 11 weeks. While 11 weeks is significant in

an accelerated environment, natural aging processes typically

span years, and while high temperatures speed up this process,

complete and uniform aging still requires more time. This

localized aging can significantly impact the reliability of our

RO-PUF. To verify this, we applied the methodology outlined

in Figure 3a to track the number of bit changes in the PUF

responses after each week of testing across the three FPGAs

used in the experiments. As shown in Figure 3b, the bit flip

rate is monitored over time. Initially, the attacked FPGA shows

a bit flip rate of 3%, but after the thermal attack, this rate more

than doubles.

IV. CONCLUSION

In this article, we demonstrated that exposing an FPGA to

high temperatures, combined with the strategic use of internal

resources (e.g., oscillating vs. non-oscillating structures), leads

to targeted aging, altering the chip’s intrinsic characteristics.

While previous literature suggests that inactive oscillators age

faster than active ones, our experiments revealed the opposite.

This discrepancy can be attributed to the architecture of

FPGAs, where limited knowledge of the internal structure of

LUTs hinders definitive conclusions.

REFERENCES

[1] Laurent Maingault and al. Laboratory x-rays operando single bit attacks
on flash memory cells. In International Conference on Smart Card

Research and Advanced Applications, pages 139–150. Springer, 2021.
[2] Mathieu Dumont and al. Modeling and simulating electromagnetic fault

injection. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 40(4):680–693, 2020.
[3] Alexandre Proulx and al. Investigating the effect of electromagnetic fault

injections on the configuration memory of sram-based fpga devices. In
2023 IEEE Physical Assurance and Inspection of Electronics (PAINE),
pages 1–7, 2023.

[4] Alireza Shamsoshoara and al. A survey on physical unclonable function
(puf)-based security solutions for internet of things. Computer Networks,
183:107593, 2020.

[5] Hayden Cook and al. Cloning the unclonable: Physically cloning an
fpga ring-oscillator puf. In 2022 International Conference on Field-

Programmable Technology (ICFPT), pages 1–10. IEEE, 2022.



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Une solution par Lockstep pour une architecture RISC-V sur FPGA résistante aux 

radiations 

H. Closquinet1,3, F. Miller1, L. Noizette1, Y. Helen2, P. Girard3, T. Vayssade3, A. Virazel3 

1 Nuclétudes, Les-Ulis, France 
2 Direction Générale de l’Armement, Bruz, France 

3 LIRMM 3 Univ. de Montpellier / CNRS, Montpellier, France                                                                        

Abstract— Cet article présente une architecture RISC-V qui 

met en œuvre de la redondance par Lockstep. Cette méthode 

garantit une détection et une correction efficace des fautes dans 

des environnements radiatifs sévères tout en optimisant 

l'utilisation des ressources.  Une injection de fautes par émulation 
a permis de valider cette approche.  

Mots Clés— Lockstep, tolérance aux fautes, injection de 

fautes, processeurs RISC-V, SEE. 

I. INTRODUCTION  

Dans les systèmes électroniques modernes, de plus en plus 

de composants Commerciaux Off-The-Shelf (COTS) sont 
utilisés dans des environnements exposés aux radiations. 
Malgré leur coût avantageux, ces systèmes sont 
particulièrement vulnérables aux erreurs induites par les 
radiations, et notamment aux effets d'événements uniques, les 
Single Event Effects (SEE). Si des solutions comme la 
redondance matérielle ou les Error Corrector Code (ECC) 
permettent d’y répondre, elles ont un impact sur les 
ressources et les performances du système. 

Pour limiter leur impact, le Lockstep est un bon 

compromis entre efficacité de protection, performance du 

système et ressources utilisées. Il consiste à exécuter le même 

code sur deux cSurs processeurs en parallèle (pouvant 

fonctionner en décalage de plusieurs coups d’horloge) et 

compare les sorties des cSurs processeurs afin de détecter des 

erreurs. Il intègre également des mécanismes logiciels de 

Checkpoint/Rollback visant à restaurer un état opérationnel 

en cas de faute. Cependant, les travaux autour du Lockstep, 

comme [1], [2] et [3], incluent une utilisation plus importante 

des ressources, une complexité et une consommation 

d’énergie accrue. 
Ce travail propose une architecture de Lockstep innovante 

implémentée sur FPGA, combinant détection et correction de 

fautes avec une utilisation minimale des ressources. Cette 

architecture utilise deux cSurs RISC-V avec un décalage de 

deux cycles et des mécanismes de Checkpoint/Rollback. 

L’approche proposée a été validée par injection de fautes par 

émulation. 
Ce papier est structuré comme suit : la Section II présente 

l’approche de Lockstep proposée, tandis que la Section III 
décrit les campagnes de tests menées et l’analyse des résultats. 

II. APPROCHE PROPOSEE 

Le module Lockstep est composé de plusieurs sous-
modules VHDL, comme le montre la figure 1. Malgré un 
décalage de deux cycles entre les coeurs, deux buffers 
garantissent un stockage temporaire des signaux AHB des 
processeurs sur deux cycles, ce qui permet la synchronisation 
des données. En parallèle, les requêtes du cSur "maître" 
continuent de communiquer avec le reste de l'architecture, 

afin de ne pas affecter les performances du système. En sortie 
des deux buffers, une Machine à Etats Finis (FSM) compare 
les requêtes des deux cSurs. Si elles sont identiques, un signal 
d’interruption sauvegarde périodiquement, toutes les 15ms, 
l’ensemble des General Purpose Registers (GPR), certains 
Control and Status Registers (CSR) et 2 KB de pile des 
applicatifs. En cas de faute, une interruption tente de restaurer 
le dernier état fonctionnel valide. Si l'erreur persiste, un sous-
module isole les cSurs pour éviter la propagation de la faute. 
Un dernier sous-module, un buffer, gère le retour des données 
vers les cSurs tout en maintenant le décalage de deux cycles. 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Architecture en Lockstep avec le détail de ses sous-modules 

Cette étude compare deux architectures RISC-V, en 

Lockstep et classique, toutes les deux implémentées sur un 

FPGA PolarFire de Microchip [4]. Les ressources utilisées 

par chaque architecture sont présentées dans le Tableau I.  

TABLEAU I 
UTILISATION DES RESSOURCES LOGIQUES DES DEUX ARCHITECTURES  

 
 

 
 
 

 
 

 

Trois applicatifs de la suite MiBench [5] ont été utilisés 

avec deux niveaux d'optimisation : o0 (utilisation limitée des 

registres) et o3 (utilisation complète des registres). QSort, 

trie les données, Bitcount effectue des opérations de 

comptage de bits et MxM exécute des opérations de calcul 

matriciel. Les performances des deux architectures sont 

résumées dans le Tableau II.  

TABLEAU II 
PERFORMANCES RISC-V: CLASSIQUE VS LOCKSTEP 

 

 
 
 
 
 
 
 



III. EVALUATION DE CAMPAGNES D’INJECTIONS DE FAUTES 

Pour évaluer l'approche de Lockstep, notre groupe a 

développé une méthode d'injection de fautes par émulation, 

décrite dans [6]. Elle utilise SmartDebug, un outil de 

débogage fourni par Libero, l’environnement de conception 

pour les FPGAs PolarFire. Les campagnes d’injection de 
fautes réalisées ont ciblé les D flip-flops (DFFs) et les GPRs 

du coeur MiV "maître", avec 5000 fautes injectées dans les 

DFFs et 3000 dans les GPRs basés sur un calcul statistique 

d’injection de fautes de la référence [7]. Plusieurs campagnes 

ont été menées sur les applicatifs (QSort, Bitcount, MxM) et 

les deux niveaux d'optimisation (o0 et o3), avec des résultats 

classifiés en quatre catégories. Les fautes UNACE 

(UnNecessary for Architecturally Correct Execution) sont 

sans impact ou masquées, les fautes de type Reset nécessitent 

une réinitialisation pour ramener le système à un état stable, 

les Crashs rendent le système non fonctionnel, et les Fautes 

Corrigées sont récupérées par le rollback du Lockstep. 

Les résultats montrent que la méthode Lockstep a atteint 
un taux de détection compris entre 99,5% et 100%. Pour 
l’applicatif Bitcount en o0, le Lockstep corrige 22,8% des 
erreurs DFFs et 58,9% des erreurs GPRs. Les taux de crashs 
ont diminué de 21,6% pour les DFFs et de 41,4% pour les 
GPRs, comme vu en Fig. 2. Des résultats similaires sont 
observés pour les applicatifs MxM en Fig. 3 et QSort en Fig. 
4. MxM corrige 24,8% des DFFs et 66,9% des GPRs avec 
une réduction des crashs de 15,7% et 88,5% respectivement, 
pour QSort 21,8% des DFFs et 53,7% des GPRs sont corrigés 
avec une réduction des crashs de 36,7% et 51,6%. 

Sous l'optimisation o3, le taux de crashs est plus élevé, cela 
est dû à une utilisation plus importante des registres, mais le 
mécanisme de correction du Lockstep fonctionne 
correctement. Les taux de correction sont les suivants : 
Bitcount : 20,8% (DFF), 52% (GPR), MxM : 18,1% (DFF), 
52,4% (GPR), QSort : 19,6% (DFF), 47,1% (GPR). 
 

 

 

 

 

 

 
 

Fig. 2. Résultats de l'injection de fautes pour Bitcount : 5000 fautes 
injectées dans les DFFs et 3000 dans les GPRs. 

 

 

 

 

 

 

 

Fig. 3.  Résultats de l'injection de fautes pour MxM : 5000 fautes injectées 
dans les DFFs et 3000 dans les GPRs. 

 
 

 

 

 

 

 
 
 

Fig. 4.  Résultats de l'injection de fautes pour QSort : 5000 fautes injectées 

dans les DFFs et 3000 dans les GPRs. 

IV. CONCLUSION 

Cet article présente une technique de Lockstep mise en 

oeuvre sur une architecture RISC-V et implémentée sur un 

FPGA PolarFire. Les résultats des injections de fautes 

menées ont montré que la méthode proposée détecte entre 

99,5% et 100% des fautes. En termes de correction, le 

Lockstep se montre efficace, avec jusqu’à 69% des fautes 

corrigées en o0 et 52,4% en o3. L’utilisation de ressources 

supplémentaires pour l’ajout de la méthode de Lockstep se 

limite à 37,6% en 4LUT et 21,04% en DFFs, tandis que 

l’impact sur les performances du système représente 55 % 

pour les applicatifs en o0 et 60 % pour les applicatifs en o3. 

Les travaux futurs étendront cette méthodologie par 

Lockstep sur d’autres systèmes intégrés complexes tels que 

les SoC-FPGAs. Cela ouvre la voie à l'adaptation du 

Lockstep pour des applications de Calcul à Haute 

Performance (HPC), afin de répondre aux exigences 

croissantes de systèmes embarquant des calculs de plus en 

plus puissants. 
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Abstract—Neuromorphic computing takes inspiration from
how biological neural systems operate, with the goal of building
systems that process information using low-power and discrete
spikes [1]. In recent years, several tools have been developed to
help convert spiking neural network (SNN) models into hardware
designs. This PhD project, which began in February 2025, focuses
on learning from existing solutions and gradually shaping a
workflow that supports experimentation with different hardware
configurations, with particular attention to reliability aspects. As
a first step, we implemented a simple LIF-based SNN on FPGA.

I. INTRODUCTION

Neuromorphic computing is a growing field that tries to

build systems inspired by how the brain works. In particular,

SNNs are interesting because they can use less energy and

work with spikes over time instead of continuous signals.

Tools like ModNEF [4] (Université de Lille) and Qualia

[5] (Université Côte d’Azur) can already convert SNN models

into hardware. This PhD project began recently. Our initial

goal is to better understand how such frameworks operate,

what constraints they have, and whether a more adaptable

design flow could be developed. The long-term perspective

is to gradually build a design flow that is easier to adapt and

more suitable for exploring different hardware configurations.

The rest of this paper briefly introduces SNNs and their

specific features, presents related tools, and describes the

current progress and directions for this work.

II. SPIKING NEURAL NETWORKS AND THEIR

ADVANTAGES

SNNs are a type of neural network that uses spikes to send

information, more like how real neurons work. Instead of using

numbers that change smoothly, they use simple signals (spikes)

that happen at certain times.

Compared to traditional artificial neural networks (ANNs),

SNNs can be more energy-efficient, because the neurons

exhibit sparse activity due to event-driven computation. This

is useful for devices that run on batteries or have limited com-

puting power, particularly in embedded and edge computing

scenarios. SNNs are also good for working with time-based

data, like gestures or sounds.

However, training SNNs is more difficult than training

regular neural networks. Also, building efficient hardware for

them is not easy. That’s why researchers are trying to create

tools that can help design and test SNN-based systems more

easily.

III. RELATED WORKS

In the past years, several hardware platforms have been

developed to support the implementation and experimentation

of SNNs. Some of them are designed specifically to run

large-scale SNNs efficiently and have been widely used in

neuromorphic research projects.

Loihi [2], developed by Intel, is a digital neuromorphic

chip that supports on-chip learning and asynchronous SNNs.

It features programmable neuron models, event-driven compu-

tation, and dynamic sparse connectivity, enabling efficient im-

plementations for robotics, edge AI, and autonomous systems.

While the hardware is not open-source, Loihi provides a full-

stack development environment with APIs and simulation tools

(including the Lava framework), making it a widely adopted

platform in neuromorphic research.

SpiNNaker [3], designed by the University of Manchester,

is a massively parallel neuromorphic system built with ARM

cores interconnected via a packet-switched network. It sim-

ulates large-scale neural networks in real time, prioritizing

software flexibility and biological plausibility. SpiNNaker has

been used in cognitive modeling, neuroscience studies, and

projects like the Human Brain Project.

Other academic efforts have focused on lightweight and re-

configurable toolchains. For example, ModNEF [4] generates

VHDL code from configurable SNN architectures, supporting

various neuron models. Qualia [5] is a flexible framework

for training, quantizing, and deploying neural networks on

embedded targets. It is typically used with models from Spik-

ingJelly [6], and supports deployment on microcontrollers such

as STM32L4 as well as the custom neuromorphic hardware

platform SPLEAT [7], a low-power accelerator for event-based

image classification in satellite applications.

IV. INITIAL WORK ON SNN HARDWARE DEPLOYMENT

To explore the full workflow from training to deploy-

ment, we built a simple SNN and implemented it on FPGA

(ZCU104). The model has two fully connected layers (784-

64-10) with leaky integrate-and-fire (LIF) neurons and uses

10 time steps for temporal processing. It was trained on



the MNIST dataset using the snnTorch [8] framework, and

achieved about 95% accuracy on the test set.

Quantization was performed using quantization-aware train-

ing (QAT), enabling 8-bit integer representation of weights. By

avoiding floating-point operations, we reduced memory and

computational requirements, making it easier to implement

both the weight storage and processing logic within the

BRAM and DSP resources available on the ZCU104 FPGA.

After synthesis, the quantized version reduced BRAM and

DSP usage by over 50% compared to the original floating-

point model, and also significantly lowered flip-flop and LUT

counts. This optimization came with a minor drop in accuracy

(around 2%) when running on hardware.

We rewrote the model in C++, including matrix multipli-

cation with quantized weights, spike-driven voltage updates,

classification logic, and neuron dynamics with refractory pe-

riods. We also designed the structure to be synthesis-friendly.

The weights were defined as static arrays and synthesized

together with the logic. We applied pragmas such as ’AR-

RAY PARTITION’ for loop-level parallelism. Then the C++

model was compiled with Vitis HLS to generate hardware

description (RTL). It was then packaged as a Vivado IP

core and integrated into a Vivado block design targeting the

ZCU104 board, based on Xilinx’s Zynq UltraScale+ MPSoC

platform.

To test the performance, we wrote a simple C program to

send input data and read predictions. Despite this optimization,

the classification accuracy remained close to the original

model.

V. OBJECTIVES AND METHODOLOGY

Building on this initial work, the broader goal of the PhD

is to explore how trained SNN models can be converted into

efficient hardware architectures using a flexible and modular

design flow.

We started by reviewing the main research in neuromorphic

computing, SNN learning methods, and hardware accelerators.

This helps us understand how different tools approach the

problem, what models they support, and how their design flows

are structured.

Beyond tool evaluation, we plan to experiment with

architecture-level parameters, such as numerical precision,

memory layout, and neuron models to observe their impact

on performance, energy usage, and resource consumption on

FPGA.

Later in the project, we plan to build a simple and modular

design flow. The idea is to let users try out different architec-

ture choices, such as changing numerical precision, memory

organization, or network structure, and see how these changes

affect performance, energy use, and hardware size.

We are also interested in exploring how hardware reliability

and data protection can be considered during the design

process. For instance, we want to look at simple strategies

like adding redundancy or isolating sensitive components.

Ideally, the design flow should be compatible with multiple

training frameworks and not depend on a single ecosystem.

We will try to keep it open and easy to reuse or extend, so

that others can test new ideas without starting from zero.

VI. EXPECTED CONTRIBUTIONS

This work is still at an early stage, but we hope it will lead

to:

• A simple and flexible design flow for turning SNN

models into hardware;

• A better understanding of how design choices (like preci-

sion or memory) affect performance and resource usage;

• Some basic tools for testing different architecture options;

• Ideas on how to include reliability and security in neuro-

morphic designs.

We also plan to share parts of the code or scripts that could

be useful for other researchers working on similar topics.

VII. CONCLUSION

This work represents the starting point of a doctoral research

project that aims to explore the automated generation of

hardware architectures for SNNs. We will develop a modular

design flow that enables testing of different hardware archi-

tectures for SNNs, with particular attention to resource usage

and reliability.

While several open questions remain, especially regarding

the generalization of such a flow and its applicability across

different training frameworks, we believe that this investigation

will provide valuable insights into the co-design of neuromor-

phic models and their hardware realizations.

Next steps are refining the design flow, testing use cases,

and evaluating trade-offs in cost, performance, and robustness.
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Abstract—Most Deep Neural Network (DNN) implementations
on hardware focus on the inference stage for relatively light-
weight models, primarily due to limitations in resources, memory
capacity, energy consumption, and performance requirements.
Streaming architectures, also known as dataflow architectures,
significantly enhance performance—measured in Frames Per
Second (FPS) by optimizing computation pipelines tailored to
custom DNN models. However, as networks grow larger, the
demand for computational resources increases substantially,
making hardware implementation more challenging. By using
a folding network architecture, we enable the deployment of
large DNN models on smaller FPGAs with acceptable throughput
degradation.

Index Terms—Deep Neural Network, Streaming Architecture,
Network Folding, FPGA, resource constraints.

I. INTRODUCTION

The streaming architecture has demonstrated exceptionally

high performance for feed-forward DNN models, which do not

require frequent memory write-backs compared to systolic ar-

chitecture. Numerous projects have been dedicated to optimiz-

ing streaming architectures, including: NNAWAQ [1], FINN

[2], NeuroCorgi [3], fpgaConvNet [4], HLS4ML [5], H2PIPE

[6]. However, for large-scale networks, the significant resource

constraints associated with designing and implementing a vast

number of parameters and operations remain a challenge for

researchers. To address this issue, folding techniques have

been explored to efficiently rescale the architecture, including:

fpgaConvNet [4] that using Design Space Exploration (DSE)

to design and reconfigure a FPGA or using multiple FPGAs,

FINN [2] and NNAWAQ [1] that manipulate the gralunarity

of input and output folding—using a SIMD and PE-based

approach in FINN, and a combination of parallelism and time-

multiplexing in NNAWAQ.

In various DNN models, many layer blocks are repeatedly

executed multiple times, as seen in network topology of

MobileNet, ResNet, DenseNet, GoogleNet, and Transformers,

etc. Implementing these models using a conventional stream-

ing architecture demands a massive amount of computational

resources and a large hardware footprint. To address this chal-

lenge, we propose a folding network architecture at the block-

layer level, optimizing resource utilization while maintaining

performance efficiency.

In this work, we take into account the folding net-

work architecture approach across two main ResNet vari-

ants [7], including ResNet18-ResNet34 and ResNet50-

ResNet101-ResNet152. Where, the general network topology

of ResNet50-ResNet101-ResNet152 is illustrated in Figure 1,

with {N1, N2, N3, N4} representing the number of iterations

(or loops) for each residual block. Specifically, the values of

{N1, N2, N3, N4} are {3, 4, 6, 3} for ResNet50, {3, 4,

23, 3} for ResNet101, and {3, 8, 36, 3} for ResNet152. For

the shallower variants, ResNet18 and ResNet34, the concept

of residual block iteration remains consistent, although the

number of convolutional layers within each block and the filter

sizes differ slightly.

Fig. 1. General network topology for ResNet family.

In the subsequent sections, we will provide a detailed

explanation of the methodology behind our approach (section

II). Additionally, in section III, we will identify the required

implementation resources, and then analyze key performance

metrics, including throughput and latency, both pre- and post-

folding.

II. FOLDING NETWORK ARCHITECTURE

The implementation of the folding system builds upon our

work previously done for the conventional streaming architec-

ture, as detailed in our earlier paper [1]. In that work, each



layer in the network was processed by two primary modules:

the Sliding Window Layer (SWL) for parallel data streaming,

and the Neuron Layer (Neu), which serves as the computation

engine.

To facilitate folding, we retain the original structure for

the first convolution, max-pooling, average-pooling, and fully-

connected layers. However, the combination of layers within

the residual blocks is restructured by adding a Residual Con-

troller module (Res Controller) to manage data flow across

iterations (Figure 2). Additionally, each weight buffer in

the neuron layers inside the residual block is expanded to

accommodate the weight sets for all iterations. If the quantized

weights of DNN model do not fit within the internal memory,

the weight buffer size is adjusted to the maximum weight

set size across all iterations. And then, for each iteration, the

new weight set need to be fetched from off-chip memory to

weight buffers (on-chip memory) located inside the neuron

layers. Furthermore, a Residual Sliding Window (Res SWL)

module is integrated to store the intermediate activations

during iterations (SWL ITER), as well as to provide the output

activation to the subsequent residual block (SWL OUT).

Fig. 2. A comprehensive design for folding network architecture.

III. RESULTS AND EVALUATION

For preliminary evaluation, we implemented the system on

the FPGA Xilinx VCU128 running at 250 MHz.

The platform NNAWAQ [1] is utilized for performance

estimation. In table I, ResNet-18 with a folding factor of

{2, 2, 2, 2} experiences a 2× degradation in throughput. In

contrast, ResNet-50 with a folding factor of {3, 4, 6, 3}
suffers from a 6× reduction. This performance degradation is

primarily influenced by the maximum folding factor across all

residual blocks in the network. However, there is potential for

improvement in the future by leveraging the resources saved

through folding to optimize parallelism and synchronization

among these residual blocks.

The synthesis resource utilization is summarized in Table

II. Notably, the LUTs and LUTRAM usage is significantly

reduced in the folded architecture, due to fewer logic gates

being required.

TABLE I
EVALUATION ON VCU128

Evaluation DNN architectures
metrics Resnet18 Resnet18* Resnet50 Resnet50**

Throughput 2214 fps 1107 fps 1107 fps 184 fps
Latency 1.6 ms 2.1 ms 4.9 ms 9.4 ms

* : folding factor of {2,2,2,2}
** : folding factor of {3,4,6,3}

TABLE II
DEPLOYMENT OF FOLDING NETWORK ON FPGA VCU128

Design DNN architectures
resources Resnet18 Resnet18* Resnet50 Resnet50**

LUTS 560840 (43.02%) 352696 (27.05%) 520636 (39.94%) 207622 (15.92%)
LUTRAM 281437 (46.83%) 223380 (37.17%) 165188 (27.49%) 50184 (8.35%)

BRAM 1185 (58.78%) 1000 (47.60%) 1719 (85.27%) 1417 (69.52%)
URAM 0 0 342 (35.63%) 328 (34.17%)

DSP 92 (1.02%) 64 (0.92%) 216 (2.39%) 96 (1.06%)

IV. RESEARCH PERSPECTIVES

With the potential in research orientation, we aim to design

a Design Space Exploration (DSE) for selecting the folding

factors as well as the granularity in the parallelisms of

computation engines. The Front-End will be considered to be

intergrated for facilitating the importation and pre-optimize in

the immediate representation (IR) of DNN model. For more

convincing, the bigger network such as ResNet152, DenseNet,

and Transformer aimed to be deployed in the future.
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Abstract—This paper addresses the design of a Sound Source
Localisation system using Self-Organizing Maps and its embed-
ded, constrained hardware implementation on FPGA. A modified
SOM is trained on the Sound Source Localisation for Robot
dataset with GCC-PHAT as input features. Its implementation
enables online unsupervised learning and real-time inference
(latency < 1 ms), at low-power (< 150 mW) and light footprint.
A single sound source can be classified to within 10°.

Index Terms—Edge AI, Self-Organizing Maps (SOM), Field-
Programmable Gate Arrays (FPGA), Sound Source Localization
(SSL), Algorithm-Architecture Adequation (AAA)

I. INTRODUCTION

Self-Organizing Map (SOM) learning is an unsupervised

vector quantization algorithm widely used for multidimen-

sional categorization [1]. It demonstrates its effectiveness

across various applications such as ECG clustering [2] or

anomaly detection [3]. Today, its use in Sound Source Lo-

calisation (SSL) is little studied [4].

An embedded hardware implementation based on the SOM

on an FPGA of an SSL system is proposed. The key design

objectives are: online unsupervised learning, consumption

minimization, and compact footprint. Embedded, hardware

implementation of SOM has already been proposed for image

compression [5] or QAM demodulation [6], but never for SSL.

The Sound Source Localization for Robots (SSLR) speech

dataset –recorded on a Pepper robot– is used for training [7].

II. THE SELF-ORGANIZING MAPS ALGORITHM

The SOM algorithm reduces N-dimensional input data to

an M-dimensional space using a map of M nodes, each rep-

resenting a potential cluster [1]. The SOM algorithm consists

of two phases: learning and inference.

During the learning phase, initial node weights are set

randomly. Weights are then updated by moving them toward

the features of an N-dimensional input vector. By evaluating a

distance between the input vector and each node, the ”winner”

node –the closest to the input features vector– can be selected.

The neighborhood function, often a Gaussian centered on the

winner node, determines how much and with what intensity

each node moves toward the input features vector.

During inference, the distance between the input data and

each node is calculated, identifying the ”winning” node that

indicates the estimated input group. Analyzing clusters from

the training dataset enable their labelling, allowing predictions

on new input data. Therefore, while not a classification algo-

rithm, SOM can be used to classify data into labeled clusters.

III. THE SSLR DATASET

The dataset includes audio files delivered by the 4 micro-

phones of a Pepper robot. Each audio snapshot is labeled with

the azimuth of the sound source [7]. The inter-aural model of

Pepper’s head is complex, thus the machine learning approach

seems more relevant than an analytical one.

The signals are divided into 8192-sample frames (about 170

ms for a 48 kHz sampling frequency). Generalized Cross Cor-

relations with PHAse Transform (GCC-PHAT) estimates the

Time Difference Of Arrival (TDOA) between 2 microphones,

providing audio cues related to the spatial origin of the sound.

For microphones spaced at a maximum of 11 cm apart, sound

takes about 0.32 ms to travel, i.e., 16 samples. This means

that only 32 points (16 before and 16 after the central point)

are needed to identify the correlation peak, which represents

the TDOA between 2 microphones. GCC-PHAT is applied to

each of the 6 pairs built up with 4 microphones, giving 6 32-

points GCC-PHAT outputs. This yields a total dimension of

192, matching the dimensionality of the SOM nodes.

IV. REVISITED SOM FOR HARDWARE IMPLEMENTATION

To optimize its hardware implementation, the original SOM

algorithm was modified.

Firstly, the Euclidean distance was replaced by the Manhat-

tan distance –a common strategy–, because it avoids the need

for square and square root calculations [5].

Secondly, the learning rate is used as neighborhood function

to lighten the SOM algorithm by avoiding heavy operations

like exponential and divisions. Its value decays over iterations,

ensuring a monotonic decrease as a function of the regression

steps, as required by the SOM [1]. This method adjusts only

the ”winner” node for each new input. However, this solution

shows limitations: after the first input, only the same winning

node updates its weights causing it to dominate subsequent

training data. To address this issue, the neighborhood function

adjusts all node weights during the first iteration –enabling

them to resemble the various input data–, then in subsequent

iterations, only the winning node’s weights are adjusted.



V. SIMULATIONS

The designed model must differentiate sound source’s spa-

tial origins and detect whether the source is active or not.

Evaluating this unsupervised model’s performance is complex,

necessitating various metrics.

Visual analysis of SOM clusters offers insights into SSL

performances by assessing whether training clusters gather

similar azimuths. With a homogeneous dataset and training

on 19 nodes, we expect clusters to represent angle ranges

of 20° (1 for inactivity and 18 for each 20° angular sector).

Fig. 1 shows clusters from SOM training with a learning

rate of 0.05 over 10 iterations. Although clusters are distinct,

some overlap and size disparity exist, as well as a cluster

containing all inactive sources, not just those labeled as such.

This suggests that the model has successfully clustered the

input data according to its spatial origin.

The SOM algorithm is then tested on new, unseen data. The

results demonstrate the model’s ability to group input data with

similar azimuths into the same cluster during online inference.

Similar results are achieved by training and testing a SOM

with 37 nodes (1 for inactivity and 36 for each 10° angular

sector) over 10 iterations with a learning rate of 0.05. This

learning rate is optimal: both higher and lower rates result in

fewer or less distinct clusters; and results stabilize after 10

iterations. Additional experiments with 73 nodes (5° angular

range) show complete clusters overlap, highlighting the limi-

tations of the SOM algorithm for this application.

Since the SOM is unsupervised, it is tedious to calculate

a precise accuracy. Since SLLR is not perfect, it is assumed

that some micro-pauses in the recorded voice may have been

labeled as active rather than inactive. With this hypothesis

every input predicted in the inactive cases cluster is considered

a true result to compute a Revised True Prediction Rate

(RTPR). RTPR of 0.929 and 0.914 were obtained, respectively,

for SOM of 19 and 37 clusters.

Another common metric was used: the Silhouette Coeffi-

cient (SC); which evaluates over [-1; 1] the degree of similarity

of an object to its own cluster compared to others, with higher

values indicating better-defined groups. SC of 0.176 and 0.119

were obtained, respectively, for SOM of 19 and 37 clusters.

VI. HARDWARE IMPLEMENTATION

A trade-off between resources use and latency for real-time

use was achieved to embed the SOM for SSL on FPGA. The

designs were created in VHDL using Vitis HLS in C, then

implemented and analyzed –for timing, energy consumption,

and resource usage– on a Basys 3 board via Vivado.

”Serial” and ”parallelized” implementations were tested.

The ”serial” implementation minimizes resources consumption

by prioritizing hardware efficiency over execution speed, mak-

ing it suitable for FPGA with limited resources or small prob-

lem sizes. The ”parallelized” implementation minimizes the

latency at the cost of increased resources usage. In summary,

the ”serial” implementation is resource-efficient due to reduced

parallelism and staggered operations, and offers flexibility for

adapting to various use cases.

(a) Histogram of the angles
present in each clusters (each
color represent one of the 18
clusters of spatial origins).

(b) Histogram of the angles
belonging to the inactive case
cluster.

Fig. 1. All the clusters formed during the training of the SOM on 19 nodes.

The ”serial” implementation of the SOM of 19 and 37

clusters shows, respectively, a latency of 230 and 505 µs, by

using 2,488 and 2,612 LUT, representing an used area of 11.96

and 12.56 % of the xc7a35t FPGA, and consuming 133 and

129 mW; while the ”parallelized” implementation of the SOM

of 19 and 37 clusters shows, respectively, a latency of 78.25

and 131 µs, by using 18,015 and 18,155 LUT.

VII. CONCLUSION AND PERSPECTIVES

The hardware implementation on a small FPGA of an SSL

system based on a modified SOM algorithm was demon-

strated. It enable online training and real-time inference, with

a low power consumption, a high hardware efficiency, and

a significant accuracy. Prospects include improving angular

accuracy, processing features online –on the FPGA– from the

microphone outputs, and testing on a Pepper robot.
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Abstract—Deep learning is one of the main solution in cardiac
arrhythmia classifier for its excellent performances. Research
aims to embed these classifiers as near as possible from the
sensors to process the data in real time and get ride of the
wireless communication drawbacks. This work investigates the
performance of a hardware-friendly quantified learning frame-
work that addresses the issue of data confidentiality. It achieves
the same performance than the state of the arts without data
augmentation. It is also compatible with fine-tuning increasing
the state of the art performances by up to 11 points with a model
×25000 smaller.

I. INTRODUCTION

Cardiovascular diseases are one of the main causes of death

in the world, with according to the World Health Organization

an estimation of about 17.9 million deaths per year. With the

increase of wearable electrocardiogram (ECG) sensors such as

ECG belt, or ECG patches, it is now possible to conduct in-

home and real-time heart condition monitoring which has been

shown to effectively reduce heart failure hospitalization rate

[1]. To process and analyse sensors measurement, research

focuses on the use of Artificial Intelligence (AI) to embed

Cardiac Arrhythmia Classifier (CAC) in devices. To comply

with battery lifetime requirement, State of the Art (SoA)

proposes multiple solutions for Ultra Low Power (ULP) CACs

such as binary classifier [2], antidictionary [3] or simple fully-

connected neural network (NN) with only one hidden layer [4],

[5]. However all these propositions are made for inference

only and the model need to be trained or initialized offline

using a server before deployment. Therefore, patient data must

be shared, which raises confidentiality issues, or a general

model must be integrated, but this is known to be less efficient

due to physiological differences from one patient to another.

Some studies suggest using transfer learning or fine-tuning (or

both) [6], [7]. However, most of these works use a complex

architecture of NNs (MobileNet, DenseNet) whose inference

is energy-intensive. Furthermore, they are also trained online

with full precision using 32-bit floating-point quantization

(FP32), making them incompatible with ULP on-chip training.

Nor do these solutions solve the problem of data privacy.

In a previous work [8] a hardware-friendly framework for

Quantized Training (QT) using INT8 and 8 bits power of two

(POT8) gradients has been introduced. This paper proposes

to extend the use of QT on MITBIH dataset. The second

section presents the impact of the proposed QT approach on a

simple, fully connected architecture. The third section studies

the performance of the same network after quantized fine-

tuning using a general model trained in FP32.

II. PATIENT SPECIFIC QUANTIZED TRAINING FROM

SCRATCH

In order to be compatible with on-chip training in con-

strained environment it is mandatory to quantize the backward

path during training. In [8],the proposed framework quantizes

Inference and Gradient Calculation steps as INT8 using Gen-

eral Matrix Multiplication Low Precision (GEMMLOWP) and

the weight update (WU) operation is performed using gradient

encoded as POT8. That quantization scheme makes the WU

operation compatible with in-memory computing solving the

standard SRAM read and write operation bottleneck and

reducing the energy needed for this step by 13.7 %. As in [4]

and [5] this work study the performances of fully connected

NN with 1 hidden layer of 16 neurons. This network will be

referred as MITBIHNet. This work will also use the same

inputs than reference [2]. Heartbeats are represented with 11

features: the distance of the current R-peak with the previous

and the next one, the distances of P,Q,S,T peaks with the

current R-peak and the amplitude of P,Q,R,S,T peaks. Training

is performed patient-specific with 70% of training data are

used for training and 30% for the test. Table I compares

the performance of QT from scratch with references [4], [5]

and [2]. Reference [4] proposes the best accuracy score of

all the presented solutions but is is also the biggest model.

Its F1-score is lower than the proposed solution by 2 points.

When trained using biased training, the proposed approach

achieves the same sensitivity than Zhao and when training

data are augmented with SMOTE algorithm [9] it achieves the

best SoA performances. Xu proposes the smallest model with

excellent performances. However, binary classifier is designed

in hardware which need ”learned” threshold to work correctly.

Its performances are equalled by the proposed approach when

augmented data are used. Finally, [5], proposes a model in

which weight are encoded as POT8 and stored on 4 bits which

has the smallest size considering the same input features as [2].

However this quantization degrades the model performances

which is out performed by 3 points by proposed QT without

data augmentation.

III. PATIENT SPECIFIC QUANTIZED FINE-TUNING

Training from scratch is not always possible, as it is an

energy-intensive process that can affect the battery life of the



Ref Zhao [4] Xu [2] Gautier [5] This work

AI model
FNN

32× 16× 5
Binary Classifier MITBIHNet MITBIHNet

Model Size (Kb) 58.6 0.2 1.0 2.0

Training Dataset

Augmentation

No
(Biased Training)

No
Yes

(Data Duplication)
No

No
(Biased Training)

Yes
SMOTE

Quantized Training No N.A No
INT8

POT8 WU gradients

Weights precision Fixed Point 16 bits N.A POT8 INT8

Accuracy 99 98.5 95.69 98.11 96.6 99.33

F1-score 95 N.A N.A 97.9 97.15 98.33

Sensitivity 86.22 98.5 N.A 69.23 85.99 99.22

Specificity N.A 98.2 N.A 99.45 96.8 97.61

TABLE I
COMPARISON OF PERFORMANCES OF MODELS TRAINED FROM SCRATCH

Fig. 1. Comparison of performances between general & fine-tuned models

integrated ECG sensor. In this section, it is therefore proposed

to fine-tune a general CAC for a specific patient. To our

knowledge, this is the first work proposing to edge fine-tune a

NN model for the patient-specific classification of arrhythmias.

During simulations, patients are randomly split in 2 lists. The

public list , used to train the general model is composed of

80% of the patients. The private list, used for fine-tuning and

test, is composed of 20% patients left. The general model train

on the public dataset. As it is a classification problem Cross

Entropy function is used as loss function. Adam optimizer is

used as it is known to be more stable and converge faster than

gradient descent. The general model is tested, patient specific,

on the private patient list which data are divided in 2: the fine-

tuning dataset composed of 70% of the private data and the

test dataset composed the other 30%. The general model is

fine-tuned on 1 epoch using the fine-tuning dataset and tested

again. Fine-tuning is done using Gradient Descent algorithm.

Hence, the output layer is the only layer that is updated.

Figure 1 compare the average performances between the

general model and the fine-tuned model. Fine-tuning has been

done with the quantized approach (in yellow) and without

quantization (in orange). Over 10 simulations, fine-tuning

has improved the performance of the NN model compared

to its general version. Accuracy and F1-score have been

increased by 11 and 12 points and sensitivity to arrhythmic

heartbeats as well as the precision to detect them have been

increased by respectively 10 and 7 points. In Table II, the

average performances of the patient-specific quantized fine-

tuned models are compared with references [6] and [10]. Both

work use fine-tuning to enhance the performances of the initial

Ref Aphale [10] Bechinia [6] This work

AI model EfficientNet B7 MobileNet-V2 MITBIHNet

Training Dataset

Augmentation
No

GAN
Synthetic Data

No

On-Chip Fine-tuning No No
INT8

POT8 WU gradients

Precision FP32 FP32 INT8

Accuracy 99.17 98.69 96.2

F1-score 97 90.8 96.6

Precision 99 95.8 97.2

Sensitivity 95 86.2 97.3

TABLE II
COMPARISON OF PERFORMANCES FOR FINE-TUNED MODEL

NNs. If [6]has a better accuracy than proposed approach by

2.5 points, mean precision is increased by 2 points and mean

sensitivity is increased by 11 points. Accuracy from [10] is

higher from 3 points but F1-score and Sensitivity are even

or better in proposed QT. Finally It is important to note that

proposed model has been trained using 8 bits resolution nd

it has 256 parameters against 66 millions for [10] and 3.4

millions for [6].

IV. CONCLUSION

In this paper, it has been proposed to apply a hardware-

friendly QT for cardiac arrhythmia recognition. This approach

would answer the data privacy issue and achieve SoT accuracy

without data enhancement with a gain of 1 point in sensitivity.

The model is also compatible with on-chip fine-tuning increas-

ing performances by up to 11 points with a model ×25000

smaller compared to other fine-tuned solutions of the SoA.
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Abstract— Based on a vertical nanowire technology 

with a 2-gate stack approach, we describe our flow 

toward the generation of standard cell libraries: 

from the circuit and physical design of logic cells to 

benchmarking. Compared to a single-gate approach, 

our library shows better performance (delay and 

power values) with smaller footprint. 

I. INTRODUCTION  

The extensive implementation of Artificial 

Intelligence (AI) is continuously pushing the 

performance requirements of hardware proces-

sors to ever-higher levels. This comes with the 

limitations imposed by the physical properties 

of traditional CMOS itself with scaling. Thus, 

new technological breakthroughs are needed to 

maintain the desired performance and computa-

tional requirements along with the associated 

constraints on footprint, delay and energy con-

sumption. Vertical Nanowire Field Effect Tran-

sistor (VNWFET) is an emerging technology 

that promises to improve the sustainability of 

future transistor scaling beyond the limitations 

of conventional lateral devices. With its 3D 

Gate-All-Around (GAA) architecture, this 

technology enables designs with improved en-

ergy efficiency and a smaller footprint. It also 

supports the gate stacking approach to benefit 

designs with multiple transistors in series. In 

this work, we adopt a VNWFET device [1] 

with a junctionless (JL) architecture, and we 

aim to investigate the advantages of implement-

ing gate stacking approach as compared to sin-

gle gate variant. 

II. JL2 STANDARD CELL LIBRARY 

CHARACTERIZATION 

In this section, we describe our design flow 
toward the generation of standard cell library 
based on VNWFET technology. Throughout 
this work, we adopt an accurate executable 
compact model [2] implemented in Verilog-A 

with a parameter set fitted to measurements of 
an experimental fabricated VNWFET device. 

A. Logic Cell Design and Characterization 

Performing electrical simulation on logic cells 
is considered to be one of the most important 
steps in such a flow. It allows the evaluation of 
the necessary performance characterization 
such as cells' output behavior, delay and power 
consumption. It also acts as the main building 
block toward the generation of the cells' physi-
cal design, parasitic extraction (PEX) and thus 
accurate performance metric measurements. To 
this end, we adapted our single-gate (JL1) logic 
cell designs [3] to benefit from the 2-gate stack-
ing (JL2) architecture. JL2 is advantageous for 
circuit structures with two series transistors, 
such as the pull-up network in a 2-input NOR 
gate, the pull-down network in a 2-input 
NAND gate or both networks in a 2-input XOR 
gate. We then carried out electrical simulations 
with HSpiceTM to characterize JL2 logic cells 
under different drive strengths. Table I presents 
the selected drive strengths of the cells present 
in our libraries such that: OPnXk_Style indi-
cates the Boolean operation OP, the number of 
inputs n, the drive strength k, the logic design 
style (i.e. complementary static logic). Subse-
quently, we conducted both static and dynamic 
analysis of the cells, considering all possible 
input transitions that result in output transitions. 

B. Logic Cell Physical Design and Verification 

 We then expanded our physical design flow [3] 

and design rules for JL1 cells to incorporate an 

additional gate layer, accommodating the JL2 

architecture. This allowed us to generate a pre-

liminary physical layout for the cells in the 

standard cell library (in GDSII file format) and 

thus the Library Exchange File (LEF). JL2 de-

signs exhibited a substantial improvement in 

cell area efficiency, with an average decrease of 

39.35% relative to JL1 cells. In order to verify 



 

Figure 1. 3D view of XOR2 gate with JL1 variant 

(left) and JL2 variant (right). 

that the generated layout guarantees the func-

tional logic behavior of the standard cells, we 

completed a verification test using Global 

TCAD Solutions (GTS tools. Fig. 1 shows an 

example 3D view of an XOR2 gate, exemplify-

ing one of the more complex cells. After com-

pletion of the PEX, a transient analysis was 

carried out using the generated netlist which 

allowed an accurate measurements of timing 

and power consumption. The obtained values 

illustrate the improvements in capacitive and 

resistive parasitic values extracted from JL2 

designs as compared to that of JL1. For JL2, 

average delay and energy/transition increased 

by 11% and 8.4% respectively as compared to 

ideal netlist whereas for JL1 these values in-

creased by 18.6% and 14.2% respectively. 

C. Library Evaluation 

In order to verify the validity of the generated 
library on one side and to illustrate the ad-
vantages of JL2 implementation on the other 
side, we chose to synthesize a Full Adder (FA) 
circuit. FA is considered to be an important 
benchmark in technology evaluation as it has a 
simple structure and widely used in processors. 
Fig.2 shows the comparison of performance 
metrics obtained after the synthesis of the FA 
by JL2 library to that obtained by JL1 library. 

III. CONCLUSION AND PERSPECTIVE 

In this work, we emphasized on the ad-

vantages of JL2-VNWFET over JL1. However, 

this flow can be extended to 3-gate stacking as 

it is also supported by this technology thus 

enhancing designs with 3 series transistors 

(e.g. 3-input XOR gate). Indeed, it will guaran-

tee having more compact cells with smaller 

parasitic values which will allow the synthesis 

of designs (e.g. FA) with even smaller foot-

print and better performance metrics.    

ACKNOWLEDGMENT  

This work has been funded by the European 
Union's Horizon 2020 research and innovation 
programme under grant agreement No 
101016776 (FVLLMONTI). 

REFERENCES 

[1] A. Kumar, J. Muller, S. Pelloquin, A. Lecestre, and G. Larrieu, 
<Logic gates based on 3d vertical junctionless gate-all-around 
transistors with reliable multilevel contact engineering,= Nano 
Letters, 2024. 

[2] C. Mukherjee, A. Poittevin, I. O’Connor, G. Larrieu, and C. 
Maneux, <Compact modeling of 3d vertical junction-less gate-
all-around silicon nanowire transistors towards 3d logic design,= 
Solid-State Electronics, vol. 183, p. 108125,2021. 

[3] S. Mannaa, C. Marchand, D. Deleruyelle, B. Deveautour, A. 
Bosio, C. Lenz, O. Baumgartner, and I. O’Connor, <3d vnwfet-
based standard cell library design flow: from circuit and physical 
design to logic synthesis,= in 2024 IFIP/IEEE 32nd International 
Conference on Very Large Scale Integration (VLSI-SoC). IEEE, 
2024, pp. 1–4. 

 

TABLE I.  VNWFET LIBRARY STANDARD CELLS 

WHERE K=1 CORRESPONDS TO 4 NWS.  

Logic Gate Drive Strength (k) Variant 

INVXk_CStatic 1,6,11,16 JL1 

BUFXk_CStatic 1,6,11,16 JL1 

NAND2Xk_CStatic 1,6,11 JL1,JL2 

NOR2Xk_CStatic 1,6,11 JL1,JL2 

XOR2Xk_CStatic 1,6,11 JL1,JL2 

Asynch_DFFXk_Cstatic 1 JL1,JL2 

 

 

 

 

Figure 2. Comparison of obtained metrics of 

synthesized FA between VNWFET-JL2 library 

(solid bars) and  VNWFET-JL1 (hatched bars) 

showed the fillowing gains: area (1.4X), delay 

(1.2X) and power (1.75X and 1.2 for leakage and 

dynamic power respectively). 
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I. INTRODUCTION

With the growing demand of IoT devices, new electronic

circuits are required in order to work under unstable power.

This aspect is crucial for memories, because volatile memories

lose their state when the power is off and conventional non-

volatile memories are slow and energy-consuming. Ferroelec-

tric materials offer a promising alternative for non-volatile

memories when it comes to latency and energy consumption.

We present a novel memory device made of a ferroelectric

capacitor and a CMOS inverter, that will be designed as a

non-volatile backup for a volatile memory cell.

II. PROPOSED CIRCUIT

Whereas most of the work conducted around ferroelectric

memory devices in the literature consists in reading the stored

information as a current, we propose a new circuit which

allows to read the stored data directly as a voltage.

Vf
Vin Vout

Vdd

Figure 1: Proposed FeAND memory cell

The device contains a ferroelectric capacitor connected in

series with the input of CMOS inverter. The voltage Vin is

the data input, applying a voltage on this node allows to write

data in the memory. The voltage Vdd serves as a read input,

the data is read when Vdd is a logical ’1’. The output is Vout,

if the value stored is ’1’ then Vout will be ’1’ during read,

otherwise Vout is ’0’.

This device is based on two operating schemes, read and

write:

• Write: Vdd is set to ’0’ and a programming voltage is

applied at Vin. In order to store a ’0’, Vin must be

negative (-5V), in order to store a ’1’, Vin must be

positive (+4V).

• Read: Vin is ’0’ grounded and a read pulse is applied

at Vdd. Depending on the memory state, the output Vout

will be either ’0’ or ’1’.

This device stores information in a non-volatile way using

the polarity of the ferroelectric capacitor. One memory state

corresponds to a positive polarity being stored in the ferroelec-

tric capacitor and the other one corresponds to the storage of a

negative polarity. We choose the following convention: if the

polarity is positive then mem = 1, if the polarity is negative

then mem = 0, where mem indicates the logical value of the

memory state. In order to put the ferroelectric capacitor in a

positive polarity, a positive voltage Vin = 4V must be applied

and in order to write a negative polarity the input voltage must

be Vin = −5V .

The polarity state stored in the ferroelectric capacitor will

affect the charge distribution inside the ferroelectric capacitor,

and in turn inside the floating node Vf . If the polarity is

positive, Vf will be in a low value Vfp. If the polarity is

negative, Vf will be in a high value Vfm.

Therefore, the information in the device is stored as a

polarity value, and in turn as a value of Vf . The device is

designed in such a way that if mem = 1 then Vf = Vfp is

low enough to cause the CMOS inverter to output Vout = 1.

Similarly, when mem = 0 then Vf = Vfm must be high

enough to trigger an output of Vout = 0 from the inverter. On

the data is written in the memory, the value of Vf is set and

will be retained. Applying a reading pulse on Vdd will then

allow to power on the inverter and read the corresponding

output. If Vout = 1 then we know that mem = 1, if Vout = 0
then mem = 0.

One important parameter of the design is the threshold

voltage of each transistor of the inverter. We define V TN =
V th, n the threshold voltage of the N-type transistor, and

V TP = Vdd + Vth,p where Vdd is the supply voltage of

the inverter and Vth,p the threshold voltage of the P-type

transistor (Vth,p < 0. For the N type transistor, we know that

if Vf < V TN the transistor is blocked, and if Vf > V TN



the transistor is passing, where Vf is the voltage applied on

the gate of the inverter. For the P type transistor we know

that if Vgs < Vth,p the transistor is passing (for the P type

transistor, Vgs = Vf˘Vdd, so this condition is equivalent to

Vf < Vdd + Vth,p = V TP ). In a similar way, we get that if

Vf > V TP then the P transistor is blocked. To sum up (see

figure 2), we know that if Vf < V TN and Vf < V TP then

Vout = 1, if Vf > V TN and Vf > V TP then Vout = 0.

0 VTN NML NMH VTP Vdd

Vout = 1 Vout = 0

Valid output
but both
transistors pass

Both transistors pass

Valid output
but both
transistors pass

Figure 2: Behavior of the device depending on Vf

We know that with a CMOS inverter, if the input voltage

is lower than the low noise margin (NML) the output will be

a valid logical ‘1’ and if the input is higher than the high

noise margin (NMH) the output will be a valid logical ‘0’.

However in these two cases, even if the output is valid the

power consumption will be high. This is not desired for our

device.

III. DESIGN METHODOLOGY

Based on the previous theoretical study, this is the method-

ology we will follow:

1) Optimization of CMOS inverter: choice of transistor

type, transistor sizing, Goal = balance NMH/NML

2) Define (arbitrarily) read/write pulses

3) Optimization of fecap size, Goal = find fecap size for

which Vfp and Vfm satisfy the design conditions

4) Optimization of read/write pulses, Goal = reduce Vf,

reduce energy consumption

IV. RESULTS

This work is conducted with the GlobalFoundries 28SLP

transistor technology. ForThe study is limited only to thin

oxide regular threshold voltage transistors.

The input and Vdd pulses are set as follows:

• Vprogm = -5V

• Vprogp = +4V

• vdd max = 1V

• T write

• T read

Once the writing and reading pulses are set, the following

sizes of components give a functional memory cell (as high-

lighted by figure 3):

• Ln = 30nm, Wn = 80nm

• Lp = 75nm, Wp = 200nm

• Afecap = 0.5*Atot = 8700nm2

We can see on the results presented in figure 3 that when

mem = 1, we get Vout = 1 when Vdd = 1. In a similar way,
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Figure 3: FeAND simulation results

when mem = 0 we get Vout = 0 when Vdd = 1. This device

thus displays the behavior of an AND logic gate having mem

and Vdd as its inputs:

mem Vdd Vout

0 0 0
0 1 0
1 0 0
1 1 1

V. CONCLUSION

We have presented a functional memory cell where the read

mechanism is performed by applying a voltage on Vdd and

reading Vout. The write mechanism is performed through a

positive or negative voltage applied at Vin.

This circuit offers some advantages:

• no need to use a sense amplifier for a single cell, because

the output is a voltage

• reduced power consumption because the device is de-

signed in such a way that always one of the transistors

is blocked, limiting power draw from Vdd.

However, the circuit has also some drawbacks, because no

multilevel storage is possible, and the value of Vf must be kept

low enough not to exceed the maximum voltage the gates of

the transistors can tolerate.
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Abstract—Cette thèse vise à développer de nouveaux algo-
rithmes d’intelligence artificielle pour le traitement des données
issues de radars 4D dans le contexte des systèmes avancés
d’aide à la conduite (ADAS). L’objectif est de proposer des
solutions basées sur l’apprentissage automatique profond afin
d’améliorer la détection, la classification, et le suivi des objets
dans l’environnement de véhicules autonomes. Les contraintes
liées à l’embarquabilité des différentes solutions proposées seront
considérées dès le début de la thèse afin de dimensionner les
algorithmes de traitement mis en œuvre. Cette thèse Cifre
s’effectue en collaboration entre le Laboratoire d’Electronique,
Antennes et Télécommunications (LEAT) de l’université Côte
d’Azur et l’équipementier automobile OPmobility (ex Plastic
Omnium).

Index Terms—Radar 4D, Intelligence Artificielle, Machine
Learning, Deep Learning, Traitement du Signal, Systèmes em-
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I. CONTEXTE ET INTRODUCTION

La sécurité des conducteurs, des passagers et de tous les

autres usagers de la route est devenue un enjeu majeur au

cours des dernières décennies. Dans ce but, les capteurs radar

ont été considérés comme des moyens essentiels pour détecter

les autres véhicules, les piétons ou les cyclistes, ainsi que

l’environnement routier. Le radar est insensible aux mauvaises

conditions de luminosité et aux intempéries, et peut mesurer

directement la distance, la vitesse radiale, et, avec un système

d’antennes approprié, également l’angle des objets éloignés.

Initialement, l’attention était portée sur l’avertissement de dis-

tance et l’évitement de collision, mais avec l’augmentation de

la maturité et de la complexité des systèmes, les fonctionnalités

inclus le régulateur de vitesse adaptatif (ACC – Adaptive

Cruise Control), le freinage d’urgence automatique (AEB –

Automatic Emergency Braking), la détection d’angle mort

(BSD – Blind Spot Detection) ou l’assistance au changement

de voie (LCA – Lane Change Assist). De nos jours, les

fonctions de sécurité protégeant les passagers et les usagers

vulnérables de la route jouent un rôle primordial.

II. RADAR 4D AUTOMOBILE

Dans le contexte des ADAS dans l’automobile, les radars

les plus utilisés sont les radars à onde continue modulée

en fréquence (Frequency Modulated Continuous Wave ou

FMCW). Cette technique permet d’estimer la distance (par

analyse du décalage de fréquence), la vitesse radiale (via l’effet

Doppler), ainsi que l’angle d’arrivée (grâce à des techniques

avancées telles que le MIMO) [1].

Cependant, ces radars ne fournissent qu’une information

spatiale restreinte à un seul plan, ce qui peut engendrer des

ambiguı̈tés dans certains scénarios de conduite autonome.

Par exemple, un radar classique ne permet pas de distinguer

un pont d’un camion arrêté en travers de la chaussée. Le

radar détecte une cible mais ne dispose pas de suffisamment

d’informations pour permettre une prise de décision sans

ambiguı̈té.

Pour lever ces ambiguı̈tés, il est nécessaire d’accéder à

une dimension spatiale supplémentaire, l’élévation. Les radars

4D répondent précisément à ce besoin en mesurant quatre

dimensions : la distance, la vitesse, l’azimut et l’élévation.

Cependant, l’exploitation de leurs données requiert la mise

en œuvre de plusieurs méthodes de traitement du signal

afin d’extraire les informations pertinentes pour les fonctions

ADAS. La donnée radar brute est ainsi tout d’abord convertie

en un nuage de points (détection). A partir de ce nuage de

points, les traitements incluent le regroupement (clustering),

la classification et le suivi dans le temps (tracking) des cibles.

Afin d’améliorer les performances des fonctionnalités ADAS,

il est essentiel d’accroı̂tre la qualité de l’information extraite

de ces fonctions.

III. OBJECTIFS DE LA THÈSE

Au cours de cette thèse, nous souhaitons apporter des

améliorations aux fonctionnalités ADAS afin de relever le

niveau d’autonomie des véhicules par une meilleure prise de

décision. Pour cela, nous proposons d’explorer les techniques

d’intelligence artificielle appliquées aux données de radar 4D.

Nous nous attachons également à conserver une dimension

d’intelligence embarquable et donc frugale, adaptée aux con-

traintes des systèmes embarqués automobiles.

La mise en œuvre de méthodes d’apprentissage automa-

tique nécessite l’accès à un jeu de données adapté. Trois



approches principales permettent d’obtenir un jeu de données :

l’acquisition expérimentale, la génération synthétique, ou

l’utilisation de jeux de données open-source. Dans notre cas,

la collecte de données impliquerait l’installation d’un radar

sur un véhicule et la réalisation de campagnes de mesure

(i.e. roulage). Toutefois, cette approche étant particulièrement

chronophage, nous ne l’avons pas retenue. La génération

synthétique de données radar, que nous avons abordé au

début de cette thèse, requiert malheureusement des temps de

calcul très important. Nous avons donc choisi de privilégier

l’utilisation de jeux de données open-source. Plusieurs d’entre

eux sont disponibles [2], [3], selon les tâches visées. En effet,

pour la détection par exemple, il est nécessaire d’accéder à

la donnée radar brute ainsi qu’au nuage de points associé.

Les datasets RaDelft [4] et K-Radar [5] sont pertinents à cet

égard, car ils contiennent à la fois des données brutes issues

de radars 4D, de lidars et de caméras. Pour le clustering,

la classification et le tracking, un nuage de points prétraité

ainsi qu’une labellisation des objets sont requis. Les jeux de

données View-of-Delft [6] et K-Radar répondent également à

ces besoins.

Différentes approches de traitement des données radar 4D

par apprentissage automatique ont été proposées récemment.

Avec le dataset RaDelft [4], les auteurs proposent un réseau

de neurones pour générer des nuages de points à partir des

données radar 4D. Ce modèle neuronal est entraı̂né en utilisant

les données issues du lidar comme vérité terrain. Les résultats

montrent que les performances obtenues avec ce réseau sont

supérieures aux méthodes de détection classiques. Sa mod-

ularité constitue également un atout majeur, l’architecture

ayant été conçue pour s’adapter aux contraintes spécifiques de

chaque application. Les auteurs du dataset View-of-Delft [6]

proposent une méthode de clusterisation et de classification de

nuages de points basée sur une approche par pointPillars [7].

Cette méthode convertie le nuage de points en une pseudo-

image pour ensuite extraire des caractéristiques par convolu-

tions, puis en utilisant une tête de détection pour produire

les boites englobantes (bounding box). On peut également

Fig. 1. Extrait du dataset View-of-Delft, pointillés fin issus du lidar, points
plus gros issus du radar 4D, photo issue de la caméra avec clustering et
classification des points par bounding box.

citer RadarPillars, une autre méthode de génération de boites

englobantes à partir d’un radar 4D. Cette approche est aussi

basée sur les pointPillars mais inclut également un mécanisme

d’attention pour la gestion des pillars. Cette méthode a aussi

été évaluée sur le dataset View-of-Delft.

IV. TRAVAUX EN COURS

Nous sommes actuellement en train de prendre en main

le code et le dataset RaDelft [4]. Nous avons relancé des

entraı̂nement du modèle pour reproduire les résultats présentés

dans l’article. Malheureusement, malgré l’aide de l’auteur,

nous n’arrivons pas à obtenir les mêmes résultats. Dans

un second temps, nous allons faire du profiling sur le

réseau RaDelft afin d’identifier les parties gourmandes en

mémoire et ressources computationnelles. L’objectif est en-

suite d’optimiser ces modèles par des techniques de compres-

sion (quantification, distillation de connaissances,...) dans le

but de déployer cette solution sur une architecture embarquée.

Nous envisageons également d’investiguer les réseaux de

Kolmogorov-Arnold (KAN) [8] pour leur apport en in-

terprétabilité.

V. CONCLUSION

Ce projet de recherche vise à proposer des solutions in-

novantes pour améliorer la détection, la classification et le

suivi des objets dans les systèmes ADAS, en s’appuyant sur

les capacités des radars 4D et la puissance des algorithmes

d’intelligence artificielle. Grâce à une meilleure exploitation de

l’information spatiale en quatre dimensions (distance, vitesse,

azimut, élévation), les radars 4D permettent de lever certaines

ambiguı̈tés encore présentes avec les capteurs conventionnels.

Notre objectif est d’explorer des méthodes d’apprentissage

automatique profond capables de s’adapter aux contraintes

des systèmes embarqués tout en répondant aux exigences

croissantes de précision, de robustesse et de temps réel. Pour

cela, nous nous appuyons sur des jeux de données open-source

variés et réalistes, intégrant des annotations multi-capteurs

(caméra, lidar, radar).
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Abstract—This paper explores the integration of Deep Learn-
ing object detection models with event cameras on FPGA
hardware for drone applications. Event cameras, known for
their ultra-low latency and low power consumption, are ideal for
real-time tasks in embedded systems. We focus on adapting the
YOLOv3 and tiny-YOLOv3 models, originally designed for RGB
data, to process event data. Using the DSEC-MOD dataset, we
demonstrate the feasibility of this approach. First, we show that
models developed for RGB data can be adapted to event data,
and then we propose an FPGA implementation of tiny-YOLOv3
using the FINN framework.

Index Terms—Event cameras, Computer vision, Object detec-
tion, FPGA, Drones

I. INTRODUCTION

The integration of event cameras in embedded systems,

particularly drones, represents a significant advancement in

sensing technology. Event cameras, inspired by the human

retina, capture changes in light intensity asynchronously, of-

fering several advantages over traditional frame-based cameras

[1]. These advantages include ultra-low latency, high dynamic

range, and low power consumption, making them ideal for

real-time applications in drones where rapid response times

and energy efficiency are crucial.

Leveraging the unusual type of signal output by event cameras

– asynchronous ternary data – requires adequate processing

techniques. Deep Learning computer vision models, built up

to now for RGB signals such as classification and segmentation

algorithms, have to be redesigned in order to efficiently extract

meaningful information from the sparse and asynchronous

event data. These models could enable drones to perform com-

plex tasks such as object detection, tracking, and navigation

in dynamic environments with high precision and reactivity.

However, the implementation of these Deep Learning models

on traditional hardware platforms like CPUs, microcontrollers,

or GPUs presents challenges in terms of power consumption,

processing speed, and flexibility. Field-Programmable Gate

Arrays (FPGAs) emerge as a superior alternative for embedded

systems due to their parallel processing capabilities, recon-

figurability, and energy efficiency. FPGAs can be customized

to optimally execute Deep Learning algorithms, providing

the necessary computational power while maintaining low

power consumption, which is essential for the constrained

environments of drone operations.

This paper explores the integration of Deep Learning object

detection models with event cameras on FPGA hardware.

We focus on the example of YOLOv3 [2] and tiny-YOLOv3

Fig. 1: Example of the DPU pipeline running on a Kria KV260
board

[3], and we use the event-based dataset DSEC-MOD [4] to

train and evaluate the model, showcasing the feasibility and

advantages of this approach.

II. DPU IMPLEMENTATION

PYNQ is a Python framework that facilitates communica-

tion between the CPU and FPGA, providing access to the

Xilinx Deep Learning Processing Unit (DPU) [5]. The DPU

acts as a hardware accelerator for Deep Learning inference,

capable of running different models without design changes.

Its principle is described in figure 2. We used a pre-compiled

YOLOv3 model trained on the VOC12 RGB dataset [6] to test

our pipeline on a Kria KV260 board. The model successfully

detected objects in event data (see figure 1), demonstrating the

adaptability of RGB-trained models to event data with minimal

fine-tuning.

III. DSEC-MOD DATASET

In this work, we use the DSEC-MOD dataset, a curated

subset of the DSEC (Dynamic Stereo Event Camera) [7]

dataset, specifically annotated for moving object detection

tasks. The dataset comprises sequences captured in diverse

driving scenarios, with annotations focusing on a single class

Xilinx

DPU
RAM

Input

Output

Fig. 2: Xilinx DPU overview
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TABLE I: Compared Performance and FPGA Resource Utilization of Quantized Models

Quantization
mAP@50 FPGA Resource Utilization

Event RGB LUT SRL FF BRAM URAM DSP

FP32 0.52 0.58 - - - - - -

INT8 0.51 0.58 124193 18451 140538 518 5 643

INT4 0.51 0.58 83277 10994 90193 172 5 463

INT3 0.49 0.57 108227 7030 93082 148 0 1633

INT2 0.46 0.56 94752 5265 76755 97 4 1333

labeled as “moving objects.” This class encompasses various

dynamic objects belonging to a total of 8 classes, reflecting the

critical entities encountered in autonomous driving environ-

ments. DSEC-MOD provides synchronized RGB frames and

event streams, enabling comprehensive analysis of multimodal

detection approaches. The dataset contains 13,314 frames of

640×480 resolution, with 10,495 frames allocated for training

and 2,819 frames for testing.

IV. FINN IMPLEMENTATION

FINN [8] is an open-source framework developed for de-

ploying quantized neural networks (QNNs) on FPGA. FINN

provides an end-to-end flow for exploring and implementing

QNN inference solutions, generating dataflow-style architec-

tures customized for each network, as shown on figure 3. This

pipelined architecture allows for better performance than the

DPU in terms of latency and throughput, at the cost of a higher

resource utilization and no versatility.

In this study, we use Tiny-YOLOv3, with a redesigned back-

bone to enhance memory efficiency and reduce computational

cost. Initially, we train a floating-point (FP32) model as a

baseline reference. Subsequently, we quantize the model to

8-bit, 4-bit, and 2-bit precision levels, evaluating each ver-

sion’s performance. The training and evaluation are conducted

using both the DSEC-MOD Event and DSEC-MOD RGB

datasets.The accuracy is measured using the mean Average

Precision at an Intersection over Union (IoU) threshold of

0.5, commonly referred to as mAP@50. The results of these

experiments are summarized in table I.

The quantized versions of our custom Tiny-YOLOv3 model

are exported to the ONNX format, facilitating compatibil-

ity with the FINN framework. Within FINN, these models

are transformed into dataflow-style architectures optimized

for FPGA deployment. Subsequently, a bitstream is synthe-

sized and deployed onto the TySOM-3A-ZU19EG prototyping

board. Operating at 100 MHz with a batch size of 10, we

evaluated each quantized model ranging from 8-bit to 2-bit

precision and targeting a real-time throughput of 60 frames

Op. 1 Op. 2 ... Op. NInput Output

FIFO FIFO FIFO

Fig. 3: FINN architecture overview

per second (FPS), this analysis focused on the utilization of

FPGA resources, results are detailed in table I.

V. CONCLUSION

In this work, we propose several tiny-YOLOv3 FPGA im-

plementations specialized for event data, with different quan-

tization levels. It appears that the best compromise between

performance and resource utilization – and therefore inference

time – is 4-bit-quantization for this model. Indeed, the loss in

mAP@50 is negligible and FINN can still optimize the DSP

utilization, resulting in relatively low FPGA footprint.
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Abstract

The RISC-V ecosystem is quickly growing and has gained a lot of traction in the FPGA community, as it permits

free customization of both ISA and micro-architectural features. However, the design of the corresponding

micro-architecture is costly and error-prone. We address this issue by providing a flow capable of automatically

synthesizing pipelined micro-architectures directly from an Instruction Set Simulator in C/C++. Our flow

is based on HLS technology and bridges part of the gap between Instruction Set Processor design flows and

High-Level Synthesis tools by taking advantage of speculative loop pipelining. Our results show that our flow

is general enough to support a variety of ISA and micro-architectural extensions, and is capable of producing

circuits that are competitive with manually designed cores.

Figure 1: Our SLP source-to-source transformation flow. The toolchain takes C code 1 as an input and produces

transformed C code 3 . 2 and 4 show the respective schedules of the input and output code.

Speculative HLS of RISC-V Cores

The RISC-V ecosystem is quickly growing and has

gained a lot of traction in the FPGA community, as

it permits free customization of both the ISA and the

micro-architecture.

Retargeting a compiler to a new ISA is a widely

studied problem, but automatically synthesizing the

corresponding instruction set micro-architecture has

received less attention. Existing tools and technique

offer significant room for improvement: they either lack

generality [1, 2] or operate from low-level structural

models that are not fundamentally different from RTL

specifications.

In the meantime, High-Level Synthesis (HLS) tech-

nology, which compiles C and C++ code directly to

hardware circuits, has continuously improved. For ex-

ample, several recent research results have shown how

High-Level-Synthesis techniques could be extended to

synthesize efficient speculative hardware structures [3,

4]. In particular, Speculative Loop Pipelining (SLP)

appears as a promising approach as it can handle

both control-flow and memory speculations within a

classical HLS framework [5].

Our work bridges part of the gap between Instruc-

tion Set Processor design flows and High-Level Syn-

thesis tools. We show how to take advantage of SLP

to automatically synthesize in-order pipelined micro-

architectures from Instruction Set Simulator (ISS)

models written in C, focusing on the RISC-V ISA.

Our contributions are the following:

• We show how SLP can serve as a foundation to

perform fully automatic micro-architectural syn-

thesis from a behavioral description of a processor,

in the form of an ISS. We extend SLP to support

the synthesis of in-order pipelined CPU micro-

architectures and their hazard recovery logic.

• We evaluate our approach in terms of sup-

ported features (both from an ISA and micro-

architectural perspective) and quality of results

1
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Figure 2: Area/performance result set for 21 variants of RV32I core (left) and 105 variants of RV32IM core (right)

synthesized through our approach. Results for Sodor, Comet and CVE4 are reported on the figure as baselines.

(performance and area). Our results show that our

flow can handle complex mechanisms like branch

prediction and hardware Control-Flow Integrity

while providing QoR similar to manual designs.

Our source-to-source transformation flow, depicted

in Figure 1, accepts C code as input and produces spec-

ulatively pipelined C code targeting an HLS toolchain.

The latter can then be compiled/synthesized to obtain

an RTL-level description of the processor core.

The key idea in SLP resides in rescheduling critical

operations to extend their dependence distance before

calling the HLS tool. The HLS static pipelining pass

will harness this additional schedule slack to produce

more aggressive (i.e., deeper) pipelined schedules with

higher clock speeds. The output C code shown in

Part 3 of Figure 1 is produced from the input C

code in Part 1 . Its corresponding execution trace is

provided in Part 4 .

Results

To demonstrate that our proposed approach can gen-

erate competitive pipelined micro-architectures, we

generate a large set of processors by exploring different

speculation setups: no speculation on the register file,

pipeline interlocking, or forwarding. We also modify

the latency of the different operational blocks used in

the ISS to explore several different pipeline depths. As

baselines, we also synthesize the three Sodor pipelined

cores (2-, 3-, and 5-stage pipelines) and the CV32E40P

core [6]. We synthesize two configurations of the Comet

processor [7], RV32I and RV32IM. As our generated

cores do not implement RISC-V CSR registers, we

remove the CSR unit from the Sodor and CVE4 cores.

Our experiments target an Artix7 XC7A200TISBG-

1L and use Vitis HLS 2021.2 as the HLS backend.

Performance results were obtained by executing the

Dhrystone benchmark, compiled using newlibc.

Results of the automatic design space exploration

are provided in Figure 2. The leftmost part repre-

sents the results obtained for the RV32I ISA, and the

rightmost part represents the results obtained with

the RV32IM ISA. The generated micro-architectures

are slower than the Sodor and Comet baselines for

the RV32I ISA, while we are able to generate faster

cores for the RV32IM target (55% faster than CVE4).

Our generic approach generates extra control logic on

the critical path of the RV32I cores, reducing their

maximal frequency. On the other hand, the critical

path of RV32IM cores is located in the multiplica-

tion/division unit. The extra logic that hinders the

RV32I performance could be optimized during the SLP

transformation, but this improvement is left for future

work.
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